Microhollow cathode discharge excimer lamps
Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Ex...
Gespeichert in:
Veröffentlicht in: | Physics of Plasmas 2000-05, Vol.7 (5), p.2186-2191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2191 |
---|---|
container_issue | 5 |
container_start_page | 2186 |
container_title | Physics of Plasmas |
container_volume | 7 |
creator | Schoenbach, Karl H. El-Habachi, Ahmed Moselhy, Mohamed M. Shi, Wenhui Stark, Robert H. |
description | Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ∼400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ∼2% for argon fluoride. |
doi_str_mv | 10.1063/1.874039 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20216080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f12631c9a926c73813853507ffdb87329310a7538e4612f65a710e0e0f1b5db33</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6r4E8oeFGk60ynTdKjLH7BihcFbyFNExvpbpak-PHv7VLxB8gcZg4PL8PL2CnCAoHTFS6kKIHqPTZDkHUuuCj3d7eAnPPy9ZAdpfQOACWv5IxdPnoTQxf6PnxmRg9daG3W-mQ6Hd9sZr-MX9uY9Xq9TcfswOk-2ZPfPWcvtzfPy_t89XT3sLxe5YZkPeQOC05oal0X3AiSSLKiCoRzbSMFFTUhaFGRtCXHwvFKCwQ7jsOmahuiOTubckMavErGD9Z0Jmw21gyqgAI5SBjV-aTG_1OK1qlt9GsdvxWC2lWhUE1VjPRiorssPfiw-Zf9CPHPqW3r6Afa1mnh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microhollow cathode discharge excimer lamps</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Schoenbach, Karl H. ; El-Habachi, Ahmed ; Moselhy, Mohamed M. ; Shi, Wenhui ; Stark, Robert H.</creator><creatorcontrib>Schoenbach, Karl H. ; El-Habachi, Ahmed ; Moselhy, Mohamed M. ; Shi, Wenhui ; Stark, Robert H.</creatorcontrib><description>Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ∼400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ∼2% for argon fluoride.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.874039</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ARGON ; ELECTRIC DISCHARGES ; EXCIMER LASERS ; EXPERIMENTAL DATA ; GAS DISCHARGE TUBES ; HOLLOW CATHODES ; ULTRAVIOLET SPECTRA ; XENON</subject><ispartof>Physics of Plasmas, 2000-05, Vol.7 (5), p.2186-2191</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f12631c9a926c73813853507ffdb87329310a7538e4612f65a710e0e0f1b5db33</citedby><cites>FETCH-LOGICAL-c389t-f12631c9a926c73813853507ffdb87329310a7538e4612f65a710e0e0f1b5db33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.874039$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,790,881,1553,4498,23909,23910,25118,27901,27902,76353,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20216080$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schoenbach, Karl H.</creatorcontrib><creatorcontrib>El-Habachi, Ahmed</creatorcontrib><creatorcontrib>Moselhy, Mohamed M.</creatorcontrib><creatorcontrib>Shi, Wenhui</creatorcontrib><creatorcontrib>Stark, Robert H.</creatorcontrib><title>Microhollow cathode discharge excimer lamps</title><title>Physics of Plasmas</title><description>Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ∼400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ∼2% for argon fluoride.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ARGON</subject><subject>ELECTRIC DISCHARGES</subject><subject>EXCIMER LASERS</subject><subject>EXPERIMENTAL DATA</subject><subject>GAS DISCHARGE TUBES</subject><subject>HOLLOW CATHODES</subject><subject>ULTRAVIOLET SPECTRA</subject><subject>XENON</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6r4E8oeFGk60ynTdKjLH7BihcFbyFNExvpbpak-PHv7VLxB8gcZg4PL8PL2CnCAoHTFS6kKIHqPTZDkHUuuCj3d7eAnPPy9ZAdpfQOACWv5IxdPnoTQxf6PnxmRg9daG3W-mQ6Hd9sZr-MX9uY9Xq9TcfswOk-2ZPfPWcvtzfPy_t89XT3sLxe5YZkPeQOC05oal0X3AiSSLKiCoRzbSMFFTUhaFGRtCXHwvFKCwQ7jsOmahuiOTubckMavErGD9Z0Jmw21gyqgAI5SBjV-aTG_1OK1qlt9GsdvxWC2lWhUE1VjPRiorssPfiw-Zf9CPHPqW3r6Afa1mnh</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Schoenbach, Karl H.</creator><creator>El-Habachi, Ahmed</creator><creator>Moselhy, Mohamed M.</creator><creator>Shi, Wenhui</creator><creator>Stark, Robert H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20000501</creationdate><title>Microhollow cathode discharge excimer lamps</title><author>Schoenbach, Karl H. ; El-Habachi, Ahmed ; Moselhy, Mohamed M. ; Shi, Wenhui ; Stark, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f12631c9a926c73813853507ffdb87329310a7538e4612f65a710e0e0f1b5db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ARGON</topic><topic>ELECTRIC DISCHARGES</topic><topic>EXCIMER LASERS</topic><topic>EXPERIMENTAL DATA</topic><topic>GAS DISCHARGE TUBES</topic><topic>HOLLOW CATHODES</topic><topic>ULTRAVIOLET SPECTRA</topic><topic>XENON</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoenbach, Karl H.</creatorcontrib><creatorcontrib>El-Habachi, Ahmed</creatorcontrib><creatorcontrib>Moselhy, Mohamed M.</creatorcontrib><creatorcontrib>Shi, Wenhui</creatorcontrib><creatorcontrib>Stark, Robert H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of Plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoenbach, Karl H.</au><au>El-Habachi, Ahmed</au><au>Moselhy, Mohamed M.</au><au>Shi, Wenhui</au><au>Stark, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhollow cathode discharge excimer lamps</atitle><jtitle>Physics of Plasmas</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>7</volume><issue>5</issue><spage>2186</spage><epage>2191</epage><pages>2186-2191</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ∼400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ∼2% for argon fluoride.</abstract><cop>United States</cop><doi>10.1063/1.874039</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of Plasmas, 2000-05, Vol.7 (5), p.2186-2191 |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_20216080 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ARGON ELECTRIC DISCHARGES EXCIMER LASERS EXPERIMENTAL DATA GAS DISCHARGE TUBES HOLLOW CATHODES ULTRAVIOLET SPECTRA XENON |
title | Microhollow cathode discharge excimer lamps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhollow%20cathode%20discharge%20excimer%20lamps&rft.jtitle=Physics%20of%20Plasmas&rft.au=Schoenbach,%20Karl%20H.&rft.date=2000-05-01&rft.volume=7&rft.issue=5&rft.spage=2186&rft.epage=2191&rft.pages=2186-2191&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.874039&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |