Getting to 100%: Six strategies for the challenging last 10
Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to r...
Gespeichert in:
Veröffentlicht in: | Joule 2022-09, Vol.6 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Joule |
container_volume | 6 |
creator | Mai, Trieu Denholm, Paul Brown, Patrick Cole, Wesley Hale, Elaine Lamers, Patrick Murphy, Caitlin Ruth, Mark Sergi, Brian Steinberg, Daniel Baldwin, Samuel F. |
description | Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2008006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008006</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_20080063</originalsourceid><addsrcrecordid>eNqNyj0LwjAQgOEgChbtfzgEx8I1aUvVUfzYdS8hXNtISKB3gz9fBQdHp_cdnpnKdF3pojJ1Of_5pcqZH4hY7nSrG5Opw4VEfBxAEpSI2z3c_BNYJis0eGLo0wQyErjRhkBx-NhgWd56rRa9DUz5tyu1OZ_ux2uRWHzHzgu50aUYyUmnEVvExvyFXg0gNxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Getting to 100%: Six strategies for the challenging last 10</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F.</creator><creatorcontrib>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</description><identifier>ISSN: 2542-4351</identifier><identifier>EISSN: 2542-4351</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>decarbonization ; ENERGY PLANNING, POLICY, AND ECONOMY ; grid planning ; power systems ; renewable energy</subject><ispartof>Joule, 2022-09, Vol.6 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2008006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, Trieu</creatorcontrib><creatorcontrib>Denholm, Paul</creatorcontrib><creatorcontrib>Brown, Patrick</creatorcontrib><creatorcontrib>Cole, Wesley</creatorcontrib><creatorcontrib>Hale, Elaine</creatorcontrib><creatorcontrib>Lamers, Patrick</creatorcontrib><creatorcontrib>Murphy, Caitlin</creatorcontrib><creatorcontrib>Ruth, Mark</creatorcontrib><creatorcontrib>Sergi, Brian</creatorcontrib><creatorcontrib>Steinberg, Daniel</creatorcontrib><creatorcontrib>Baldwin, Samuel F.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Getting to 100%: Six strategies for the challenging last 10</title><title>Joule</title><description>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</description><subject>decarbonization</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>grid planning</subject><subject>power systems</subject><subject>renewable energy</subject><issn>2542-4351</issn><issn>2542-4351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNyj0LwjAQgOEgChbtfzgEx8I1aUvVUfzYdS8hXNtISKB3gz9fBQdHp_cdnpnKdF3pojJ1Of_5pcqZH4hY7nSrG5Opw4VEfBxAEpSI2z3c_BNYJis0eGLo0wQyErjRhkBx-NhgWd56rRa9DUz5tyu1OZ_ux2uRWHzHzgu50aUYyUmnEVvExvyFXg0gNxc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mai, Trieu</creator><creator>Denholm, Paul</creator><creator>Brown, Patrick</creator><creator>Cole, Wesley</creator><creator>Hale, Elaine</creator><creator>Lamers, Patrick</creator><creator>Murphy, Caitlin</creator><creator>Ruth, Mark</creator><creator>Sergi, Brian</creator><creator>Steinberg, Daniel</creator><creator>Baldwin, Samuel F.</creator><general>Elsevier</general><scope>OTOTI</scope></search><sort><creationdate>20220901</creationdate><title>Getting to 100%: Six strategies for the challenging last 10</title><author>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_20080063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>decarbonization</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>grid planning</topic><topic>power systems</topic><topic>renewable energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Trieu</creatorcontrib><creatorcontrib>Denholm, Paul</creatorcontrib><creatorcontrib>Brown, Patrick</creatorcontrib><creatorcontrib>Cole, Wesley</creatorcontrib><creatorcontrib>Hale, Elaine</creatorcontrib><creatorcontrib>Lamers, Patrick</creatorcontrib><creatorcontrib>Murphy, Caitlin</creatorcontrib><creatorcontrib>Ruth, Mark</creatorcontrib><creatorcontrib>Sergi, Brian</creatorcontrib><creatorcontrib>Steinberg, Daniel</creatorcontrib><creatorcontrib>Baldwin, Samuel F.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Joule</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Trieu</au><au>Denholm, Paul</au><au>Brown, Patrick</au><au>Cole, Wesley</au><au>Hale, Elaine</au><au>Lamers, Patrick</au><au>Murphy, Caitlin</au><au>Ruth, Mark</au><au>Sergi, Brian</au><au>Steinberg, Daniel</au><au>Baldwin, Samuel F.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Getting to 100%: Six strategies for the challenging last 10</atitle><jtitle>Joule</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>6</volume><issue>9</issue><issn>2542-4351</issn><eissn>2542-4351</eissn><abstract>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</abstract><cop>United States</cop><pub>Elsevier</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2542-4351 |
ispartof | Joule, 2022-09, Vol.6 (9) |
issn | 2542-4351 2542-4351 |
language | eng |
recordid | cdi_osti_scitechconnect_2008006 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | decarbonization ENERGY PLANNING, POLICY, AND ECONOMY grid planning power systems renewable energy |
title | Getting to 100%: Six strategies for the challenging last 10 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Getting%20to%20100%25:%20Six%20strategies%20for%20the%20challenging%20last%2010&rft.jtitle=Joule&rft.au=Mai,%20Trieu&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-09-01&rft.volume=6&rft.issue=9&rft.issn=2542-4351&rft.eissn=2542-4351&rft_id=info:doi/&rft_dat=%3Costi%3E2008006%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |