Getting to 100%: Six strategies for the challenging last 10

Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Joule 2022-09, Vol.6 (9)
Hauptverfasser: Mai, Trieu, Denholm, Paul, Brown, Patrick, Cole, Wesley, Hale, Elaine, Lamers, Patrick, Murphy, Caitlin, Ruth, Mark, Sergi, Brian, Steinberg, Daniel, Baldwin, Samuel F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Joule
container_volume 6
creator Mai, Trieu
Denholm, Paul
Brown, Patrick
Cole, Wesley
Hale, Elaine
Lamers, Patrick
Murphy, Caitlin
Ruth, Mark
Sergi, Brian
Steinberg, Daniel
Baldwin, Samuel F.
description Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2008006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008006</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_20080063</originalsourceid><addsrcrecordid>eNqNyj0LwjAQgOEgChbtfzgEx8I1aUvVUfzYdS8hXNtISKB3gz9fBQdHp_cdnpnKdF3pojJ1Of_5pcqZH4hY7nSrG5Opw4VEfBxAEpSI2z3c_BNYJis0eGLo0wQyErjRhkBx-NhgWd56rRa9DUz5tyu1OZ_ux2uRWHzHzgu50aUYyUmnEVvExvyFXg0gNxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Getting to 100%: Six strategies for the challenging last 10</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F.</creator><creatorcontrib>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</description><identifier>ISSN: 2542-4351</identifier><identifier>EISSN: 2542-4351</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>decarbonization ; ENERGY PLANNING, POLICY, AND ECONOMY ; grid planning ; power systems ; renewable energy</subject><ispartof>Joule, 2022-09, Vol.6 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2008006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, Trieu</creatorcontrib><creatorcontrib>Denholm, Paul</creatorcontrib><creatorcontrib>Brown, Patrick</creatorcontrib><creatorcontrib>Cole, Wesley</creatorcontrib><creatorcontrib>Hale, Elaine</creatorcontrib><creatorcontrib>Lamers, Patrick</creatorcontrib><creatorcontrib>Murphy, Caitlin</creatorcontrib><creatorcontrib>Ruth, Mark</creatorcontrib><creatorcontrib>Sergi, Brian</creatorcontrib><creatorcontrib>Steinberg, Daniel</creatorcontrib><creatorcontrib>Baldwin, Samuel F.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Getting to 100%: Six strategies for the challenging last 10</title><title>Joule</title><description>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</description><subject>decarbonization</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>grid planning</subject><subject>power systems</subject><subject>renewable energy</subject><issn>2542-4351</issn><issn>2542-4351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNyj0LwjAQgOEgChbtfzgEx8I1aUvVUfzYdS8hXNtISKB3gz9fBQdHp_cdnpnKdF3pojJ1Of_5pcqZH4hY7nSrG5Opw4VEfBxAEpSI2z3c_BNYJis0eGLo0wQyErjRhkBx-NhgWd56rRa9DUz5tyu1OZ_ux2uRWHzHzgu50aUYyUmnEVvExvyFXg0gNxc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mai, Trieu</creator><creator>Denholm, Paul</creator><creator>Brown, Patrick</creator><creator>Cole, Wesley</creator><creator>Hale, Elaine</creator><creator>Lamers, Patrick</creator><creator>Murphy, Caitlin</creator><creator>Ruth, Mark</creator><creator>Sergi, Brian</creator><creator>Steinberg, Daniel</creator><creator>Baldwin, Samuel F.</creator><general>Elsevier</general><scope>OTOTI</scope></search><sort><creationdate>20220901</creationdate><title>Getting to 100%: Six strategies for the challenging last 10</title><author>Mai, Trieu ; Denholm, Paul ; Brown, Patrick ; Cole, Wesley ; Hale, Elaine ; Lamers, Patrick ; Murphy, Caitlin ; Ruth, Mark ; Sergi, Brian ; Steinberg, Daniel ; Baldwin, Samuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_20080063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>decarbonization</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>grid planning</topic><topic>power systems</topic><topic>renewable energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Trieu</creatorcontrib><creatorcontrib>Denholm, Paul</creatorcontrib><creatorcontrib>Brown, Patrick</creatorcontrib><creatorcontrib>Cole, Wesley</creatorcontrib><creatorcontrib>Hale, Elaine</creatorcontrib><creatorcontrib>Lamers, Patrick</creatorcontrib><creatorcontrib>Murphy, Caitlin</creatorcontrib><creatorcontrib>Ruth, Mark</creatorcontrib><creatorcontrib>Sergi, Brian</creatorcontrib><creatorcontrib>Steinberg, Daniel</creatorcontrib><creatorcontrib>Baldwin, Samuel F.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Joule</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Trieu</au><au>Denholm, Paul</au><au>Brown, Patrick</au><au>Cole, Wesley</au><au>Hale, Elaine</au><au>Lamers, Patrick</au><au>Murphy, Caitlin</au><au>Ruth, Mark</au><au>Sergi, Brian</au><au>Steinberg, Daniel</au><au>Baldwin, Samuel F.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Getting to 100%: Six strategies for the challenging last 10</atitle><jtitle>Joule</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>6</volume><issue>9</issue><issn>2542-4351</issn><eissn>2542-4351</eissn><abstract>Meeting the last increment of demand always poses challenges, irrespective of whether the resources used to meet it are carbon free. The challenges primarily stem from the infrequent utilization of assets deployed to meet high demand periods, which require very high revenue during those periods to recover capital costs. Achieving 100% carbon-free electricity obviates the use of traditional fossil-fuel-based generation technologies, by themselves, to serve the last increment of demand—which we refer to as the “last 10%.” Here, in this study, we survey strategies for overcoming this last 10% challenge, including extending traditional carbon-free energy sources (e.g., wind and solar, other renewable energy, and nuclear), replacing fossil fuels with carbon-free fuels for combustion (e.g., hydrogen- and biomass-based fuels), developing carbon capture and carbon dioxide removal technologies, and deploying multi-day demand-side resources. We qualitatively compare economic factors associated with the low-utilization condition and discuss unique challenges of each option to inform the complex assessments needed to identify a portfolio that could achieve carbon-free electricity. Although many electricity systems are a long way from requiring these last 10% technologies, research and careful consideration are needed soon for the options to be available when electricity systems approach 90% carbon-free electricity.</abstract><cop>United States</cop><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 2542-4351
ispartof Joule, 2022-09, Vol.6 (9)
issn 2542-4351
2542-4351
language eng
recordid cdi_osti_scitechconnect_2008006
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects decarbonization
ENERGY PLANNING, POLICY, AND ECONOMY
grid planning
power systems
renewable energy
title Getting to 100%: Six strategies for the challenging last 10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Getting%20to%20100%25:%20Six%20strategies%20for%20the%20challenging%20last%2010&rft.jtitle=Joule&rft.au=Mai,%20Trieu&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-09-01&rft.volume=6&rft.issue=9&rft.issn=2542-4351&rft.eissn=2542-4351&rft_id=info:doi/&rft_dat=%3Costi%3E2008006%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true