Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes

The electrochemical oxidation of bio-derived molecules has recently garnered interest for its potential in opening electrified synthetic pathways toward value-added products. Herein, we investigate the electrochemical conversion of benzyl alcohol (BA) to benzaldehyde and benzoate on nickel–iron (Fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-04, Vol.13 (7), p.4272-4282
Hauptverfasser: Wei, Lingze, Hossain, Md Delowar, Boyd, Michael J., Aviles-Acosta, Jaime, Kreider, Melissa E., Nielander, Adam C., Stevens, Michaela Burke, Jaramillo, Thomas F., Bajdich, Michal, Hahn, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4282
container_issue 7
container_start_page 4272
container_title ACS catalysis
container_volume 13
creator Wei, Lingze
Hossain, Md Delowar
Boyd, Michael J.
Aviles-Acosta, Jaime
Kreider, Melissa E.
Nielander, Adam C.
Stevens, Michaela Burke
Jaramillo, Thomas F.
Bajdich, Michal
Hahn, Christopher
description The electrochemical oxidation of bio-derived molecules has recently garnered interest for its potential in opening electrified synthetic pathways toward value-added products. Herein, we investigate the electrochemical conversion of benzyl alcohol (BA) to benzaldehyde and benzoate on nickel–iron (Fe ∼ 7–18%) electrodes as a model system to understand reaction mechanisms and environmental conditions that can transform these molecules. Our results indicate a strong correlation between benzyl alcohol oxidation (BAO) onset potentials and Ni­(II/III) redox peak positions, highlighting the potential role that lower oxidation states of nickel, i.e., Ni3+, can play in BAO catalysis. Our work on the Ni2+/3+ system complements mechanisms that involve higher oxidation states of Ni as reported by others. We note that the Ni redox position and thus BAO onset is impacted by Fe incorporation during electrochemistry from unpurified electrolytes, which can resemble standard reactor operating conditions. We perform a systematic computational investigation into BAO and provide density functional theory (DFT) insights into how the redox mechanism has been such a prominent focus of alcohol oxidations. This includes the mode of BA adsorption and the nature of the adsorption site; upon conversion of the Ni2+ surface to active Ni3+ via hydroxyl deprotonation, BAO is thermodynamically downhill. Our DFT study also introduces the possibility of a vacancy-driven mechanism, though expected to be less prevalent during catalysis than the redox mechanism for a Ni3+ surface. Through the systematic investigation of experimental reaction conditions and computational free energy thermodynamics, we have gained valuable insights into BAO reaction mechanisms that inform catalytic activity. Our study opens avenues for further design and development of catalyst active sites for the oxidation of related organic molecules.
doi_str_mv 10.1021/acscatal.2c05656
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2006812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c21218404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-f192840b3ff48100320109560b616d48e180c4563f54c479de462627ce07a5123</originalsourceid><addsrcrecordid>eNp1UMFOwzAMjRBITGN3jhFnCk6apO1xTAMmDXYAzlWWpjSjS1AT0MqJf-AP-RICGxIXLEu25fcsv4fQMYEzApScS-WVDLI9owq44GIPDSjhPOEs5ft_-kM08n4FMRgXeQYDZGfWm8cmeGxscHisgnnV-M4E7bG0Fb7RqpHW-LXHrsYX2r71LR63yjWuxYuNqWQwzuKYt0Y96fbz_WPWxWmx6Zu-6lxEaDxttQqdq7Q_Qge1bL0e7eoQPVxO7yfXyXxxNZuM54lMWRGSmhQ0Z7BM65rlBCClQKDgApaCiIrlmuSgooS05kyxrKg0E1TQTGnIJCc0HaKT7V3ngym9inpUo5y18ZGSAoj8BwRbkOqc952uy-fOrGXXlwTKb1_LX1_Lna-RcrqlxE25ci-djSr-h38Bk9F8XQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes</title><source>ACS Publications</source><creator>Wei, Lingze ; Hossain, Md Delowar ; Boyd, Michael J. ; Aviles-Acosta, Jaime ; Kreider, Melissa E. ; Nielander, Adam C. ; Stevens, Michaela Burke ; Jaramillo, Thomas F. ; Bajdich, Michal ; Hahn, Christopher</creator><creatorcontrib>Wei, Lingze ; Hossain, Md Delowar ; Boyd, Michael J. ; Aviles-Acosta, Jaime ; Kreider, Melissa E. ; Nielander, Adam C. ; Stevens, Michaela Burke ; Jaramillo, Thomas F. ; Bajdich, Michal ; Hahn, Christopher ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The electrochemical oxidation of bio-derived molecules has recently garnered interest for its potential in opening electrified synthetic pathways toward value-added products. Herein, we investigate the electrochemical conversion of benzyl alcohol (BA) to benzaldehyde and benzoate on nickel–iron (Fe ∼ 7–18%) electrodes as a model system to understand reaction mechanisms and environmental conditions that can transform these molecules. Our results indicate a strong correlation between benzyl alcohol oxidation (BAO) onset potentials and Ni­(II/III) redox peak positions, highlighting the potential role that lower oxidation states of nickel, i.e., Ni3+, can play in BAO catalysis. Our work on the Ni2+/3+ system complements mechanisms that involve higher oxidation states of Ni as reported by others. We note that the Ni redox position and thus BAO onset is impacted by Fe incorporation during electrochemistry from unpurified electrolytes, which can resemble standard reactor operating conditions. We perform a systematic computational investigation into BAO and provide density functional theory (DFT) insights into how the redox mechanism has been such a prominent focus of alcohol oxidations. This includes the mode of BA adsorption and the nature of the adsorption site; upon conversion of the Ni2+ surface to active Ni3+ via hydroxyl deprotonation, BAO is thermodynamically downhill. Our DFT study also introduces the possibility of a vacancy-driven mechanism, though expected to be less prevalent during catalysis than the redox mechanism for a Ni3+ surface. Through the systematic investigation of experimental reaction conditions and computational free energy thermodynamics, we have gained valuable insights into BAO reaction mechanisms that inform catalytic activity. Our study opens avenues for further design and development of catalyst active sites for the oxidation of related organic molecules.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.2c05656</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>alcohols ; benzyl alcohol ; biomass conversion ; density functional theory ; electro-oxidation ; electrocatalysis ; electrodes ; electrolytes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nickel−iron oxyhydroxide ; oxidation ; redox mechanism ; redox reactions</subject><ispartof>ACS catalysis, 2023-04, Vol.13 (7), p.4272-4282</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-f192840b3ff48100320109560b616d48e180c4563f54c479de462627ce07a5123</citedby><cites>FETCH-LOGICAL-a349t-f192840b3ff48100320109560b616d48e180c4563f54c479de462627ce07a5123</cites><orcidid>0000-0002-3639-2427 ; 0000-0002-2772-6341 ; 0000-0001-9900-0622 ; 0000-0001-6128-3161 ; 0000-0003-3584-0600 ; 0000-0003-1168-8616 ; 0000-0003-1750-6860 ; 0000000317506860 ; 0000000311688616 ; 0000000236392427 ; 0000000161283161 ; 0000000227726341 ; 0000000199000622 ; 0000000335840600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.2c05656$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.2c05656$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2006812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Lingze</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Boyd, Michael J.</creatorcontrib><creatorcontrib>Aviles-Acosta, Jaime</creatorcontrib><creatorcontrib>Kreider, Melissa E.</creatorcontrib><creatorcontrib>Nielander, Adam C.</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Hahn, Christopher</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The electrochemical oxidation of bio-derived molecules has recently garnered interest for its potential in opening electrified synthetic pathways toward value-added products. Herein, we investigate the electrochemical conversion of benzyl alcohol (BA) to benzaldehyde and benzoate on nickel–iron (Fe ∼ 7–18%) electrodes as a model system to understand reaction mechanisms and environmental conditions that can transform these molecules. Our results indicate a strong correlation between benzyl alcohol oxidation (BAO) onset potentials and Ni­(II/III) redox peak positions, highlighting the potential role that lower oxidation states of nickel, i.e., Ni3+, can play in BAO catalysis. Our work on the Ni2+/3+ system complements mechanisms that involve higher oxidation states of Ni as reported by others. We note that the Ni redox position and thus BAO onset is impacted by Fe incorporation during electrochemistry from unpurified electrolytes, which can resemble standard reactor operating conditions. We perform a systematic computational investigation into BAO and provide density functional theory (DFT) insights into how the redox mechanism has been such a prominent focus of alcohol oxidations. This includes the mode of BA adsorption and the nature of the adsorption site; upon conversion of the Ni2+ surface to active Ni3+ via hydroxyl deprotonation, BAO is thermodynamically downhill. Our DFT study also introduces the possibility of a vacancy-driven mechanism, though expected to be less prevalent during catalysis than the redox mechanism for a Ni3+ surface. Through the systematic investigation of experimental reaction conditions and computational free energy thermodynamics, we have gained valuable insights into BAO reaction mechanisms that inform catalytic activity. Our study opens avenues for further design and development of catalyst active sites for the oxidation of related organic molecules.</description><subject>alcohols</subject><subject>benzyl alcohol</subject><subject>biomass conversion</subject><subject>density functional theory</subject><subject>electro-oxidation</subject><subject>electrocatalysis</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nickel−iron oxyhydroxide</subject><subject>oxidation</subject><subject>redox mechanism</subject><subject>redox reactions</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOwzAMjRBITGN3jhFnCk6apO1xTAMmDXYAzlWWpjSjS1AT0MqJf-AP-RICGxIXLEu25fcsv4fQMYEzApScS-WVDLI9owq44GIPDSjhPOEs5ft_-kM08n4FMRgXeQYDZGfWm8cmeGxscHisgnnV-M4E7bG0Fb7RqpHW-LXHrsYX2r71LR63yjWuxYuNqWQwzuKYt0Y96fbz_WPWxWmx6Zu-6lxEaDxttQqdq7Q_Qge1bL0e7eoQPVxO7yfXyXxxNZuM54lMWRGSmhQ0Z7BM65rlBCClQKDgApaCiIrlmuSgooS05kyxrKg0E1TQTGnIJCc0HaKT7V3ngym9inpUo5y18ZGSAoj8BwRbkOqc952uy-fOrGXXlwTKb1_LX1_Lna-RcrqlxE25ci-djSr-h38Bk9F8XQ</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Wei, Lingze</creator><creator>Hossain, Md Delowar</creator><creator>Boyd, Michael J.</creator><creator>Aviles-Acosta, Jaime</creator><creator>Kreider, Melissa E.</creator><creator>Nielander, Adam C.</creator><creator>Stevens, Michaela Burke</creator><creator>Jaramillo, Thomas F.</creator><creator>Bajdich, Michal</creator><creator>Hahn, Christopher</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3639-2427</orcidid><orcidid>https://orcid.org/0000-0002-2772-6341</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0001-6128-3161</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0003-1750-6860</orcidid><orcidid>https://orcid.org/0000000317506860</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000236392427</orcidid><orcidid>https://orcid.org/0000000161283161</orcidid><orcidid>https://orcid.org/0000000227726341</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid></search><sort><creationdate>20230407</creationdate><title>Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes</title><author>Wei, Lingze ; Hossain, Md Delowar ; Boyd, Michael J. ; Aviles-Acosta, Jaime ; Kreider, Melissa E. ; Nielander, Adam C. ; Stevens, Michaela Burke ; Jaramillo, Thomas F. ; Bajdich, Michal ; Hahn, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-f192840b3ff48100320109560b616d48e180c4563f54c479de462627ce07a5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alcohols</topic><topic>benzyl alcohol</topic><topic>biomass conversion</topic><topic>density functional theory</topic><topic>electro-oxidation</topic><topic>electrocatalysis</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nickel−iron oxyhydroxide</topic><topic>oxidation</topic><topic>redox mechanism</topic><topic>redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Lingze</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Boyd, Michael J.</creatorcontrib><creatorcontrib>Aviles-Acosta, Jaime</creatorcontrib><creatorcontrib>Kreider, Melissa E.</creatorcontrib><creatorcontrib>Nielander, Adam C.</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Hahn, Christopher</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Lingze</au><au>Hossain, Md Delowar</au><au>Boyd, Michael J.</au><au>Aviles-Acosta, Jaime</au><au>Kreider, Melissa E.</au><au>Nielander, Adam C.</au><au>Stevens, Michaela Burke</au><au>Jaramillo, Thomas F.</au><au>Bajdich, Michal</au><au>Hahn, Christopher</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>4272</spage><epage>4282</epage><pages>4272-4282</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The electrochemical oxidation of bio-derived molecules has recently garnered interest for its potential in opening electrified synthetic pathways toward value-added products. Herein, we investigate the electrochemical conversion of benzyl alcohol (BA) to benzaldehyde and benzoate on nickel–iron (Fe ∼ 7–18%) electrodes as a model system to understand reaction mechanisms and environmental conditions that can transform these molecules. Our results indicate a strong correlation between benzyl alcohol oxidation (BAO) onset potentials and Ni­(II/III) redox peak positions, highlighting the potential role that lower oxidation states of nickel, i.e., Ni3+, can play in BAO catalysis. Our work on the Ni2+/3+ system complements mechanisms that involve higher oxidation states of Ni as reported by others. We note that the Ni redox position and thus BAO onset is impacted by Fe incorporation during electrochemistry from unpurified electrolytes, which can resemble standard reactor operating conditions. We perform a systematic computational investigation into BAO and provide density functional theory (DFT) insights into how the redox mechanism has been such a prominent focus of alcohol oxidations. This includes the mode of BA adsorption and the nature of the adsorption site; upon conversion of the Ni2+ surface to active Ni3+ via hydroxyl deprotonation, BAO is thermodynamically downhill. Our DFT study also introduces the possibility of a vacancy-driven mechanism, though expected to be less prevalent during catalysis than the redox mechanism for a Ni3+ surface. Through the systematic investigation of experimental reaction conditions and computational free energy thermodynamics, we have gained valuable insights into BAO reaction mechanisms that inform catalytic activity. Our study opens avenues for further design and development of catalyst active sites for the oxidation of related organic molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.2c05656</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3639-2427</orcidid><orcidid>https://orcid.org/0000-0002-2772-6341</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0001-6128-3161</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0003-1750-6860</orcidid><orcidid>https://orcid.org/0000000317506860</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000236392427</orcidid><orcidid>https://orcid.org/0000000161283161</orcidid><orcidid>https://orcid.org/0000000227726341</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-04, Vol.13 (7), p.4272-4282
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_2006812
source ACS Publications
subjects alcohols
benzyl alcohol
biomass conversion
density functional theory
electro-oxidation
electrocatalysis
electrodes
electrolytes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nickel−iron oxyhydroxide
oxidation
redox mechanism
redox reactions
title Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Active%20Sites%20and%20Mechanisms%20of%20Benzyl%20Alcohol%20Oxidation%20on%20Nickel%E2%80%93Iron%20Oxyhydroxide%20Electrodes&rft.jtitle=ACS%20catalysis&rft.au=Wei,%20Lingze&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-04-07&rft.volume=13&rft.issue=7&rft.spage=4272&rft.epage=4282&rft.pages=4272-4282&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.2c05656&rft_dat=%3Cacs_osti_%3Ec21218404%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true