The kinematics, metallicities, and orbits of six recently discovered Galactic star clusters with Magellan/M2FS spectroscopy

ABSTRACT We present Magellan/M2FS spectroscopy of four recently discovered Milky Way star clusters (Gran 3/Patchick 125, Gran 4, Garro 01, and LP 866) and two newly discovered open clusters (Gaia 9 and Gaia 10) at low Galactic latitudes. We measure line-of-sight velocities and stellar parameters ([F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-09, Vol.526 (1), p.1075-1094
Hauptverfasser: Pace, Andrew B, Koposov, Sergey E, Walker, Matthew G, Caldwell, Nelson, Mateo, Mario, Olszewski, Edward W, Roederer, Ian U, Bailey, John I, Belokurov, Vasily, Kuehn, Kyler, Li, Ting S, Zucker, Daniel B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We present Magellan/M2FS spectroscopy of four recently discovered Milky Way star clusters (Gran 3/Patchick 125, Gran 4, Garro 01, and LP 866) and two newly discovered open clusters (Gaia 9 and Gaia 10) at low Galactic latitudes. We measure line-of-sight velocities and stellar parameters ([Fe/H], log g, Teff, and [Mg/Fe]) from high-resolution spectroscopy centred on the Mg triplet and identify 20–80 members per star cluster. We determine the kinematics and chemical properties of each cluster and measure the systemic proper motion and orbital properties by utilizing Gaia astrometry. We find Gran 3 to be an old, metal-poor (mean metallicity of [Fe/H] = −1.83) globular cluster located in the Galactic bulge on a retrograde orbit. Gran 4 is an old, metal-poor ([Fe/H] = −1.84) globular cluster with a halo-like orbit that happens to be passing through the Galactic plane. The orbital properties of Gran 4 are consistent with the proposed LMS-1/Wukong and/or Helmi streams merger events. Garro 01 is metal-rich ([Fe/H] = −0.30) and on a near-circular orbit in the outer disc but its classification as an open cluster or globular cluster is ambiguous. Gaia 9 and Gaia 10 are among the most distant known open clusters at $R_{\mathrm{GC}}\sim 18,~21.2~\mathrm{\, kpc}$ and most metal-poor with [Fe/H] ∼−0.50, −0.34 for Gaia 9 and Gaia 10, respectively. LP 866 is a nearby, metal-rich open cluster ([Fe/H] = +0.10). The discovery and confirmation of multiple star clusters in the Galactic plane shows the power of Gaia astrometry and the star cluster census remains incomplete.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stad2760