Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland

Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2022-12, Vol.338, p.322-346
Hauptverfasser: Lefebvre, Pierre, Le Pape, Pierre, Mangeret, Arnaud, Gourgiotis, Alkiviadis, Sabatier, Pierre, Louvat, Pascale, Diez, Olivier, Mathon, Olivier, Hunault, Myrtille O.J.Y., Baya, Camille, Darricau, Louise, Cazala, Charlotte, Bargar, John R., Gaillardet, Jérôme, Morin, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue
container_start_page 322
container_title Geochimica et cosmochimica acta
container_volume 338
creator Lefebvre, Pierre
Le Pape, Pierre
Mangeret, Arnaud
Gourgiotis, Alkiviadis
Sabatier, Pierre
Louvat, Pascale
Diez, Olivier
Mathon, Olivier
Hunault, Myrtille O.J.Y.
Baya, Camille
Darricau, Louise
Cazala, Charlotte
Bargar, John R.
Gaillardet, Jérôme
Morin, Guillaume
description Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline forms. However, questions remain on the respective roles of sorption and reduction processes in the removal of U from running waters in wetlands, as well as on the long-term stability of U storage. Here, we performed a series of geochemical, isotopic (δ238U, (234U/238U)), microscopic (SEM-EDXS, EPMA) and spectroscopic (µ-XRF, µ-XAS, XANES and EXAFS at the U L3 and M4-edges and Fe K-edge) investigations to determine the modes of U accumulation and assess U mobility in a natural exceptionally U-enriched (up to 5000 µg/g) wetland on the shore of Lake Nègre (Mediterranean Alps, France). Uranium (VI) was largely dominant in the two studied soil cores, except a few samples containing as much as ∼50 % U(IV). At the particle scale, U is associated to a variety of organic constituents of the soil matrix with a homogenous oxidation state. Bulk EXAFS spectroscopy at the U L3-edge shows that U is mostly mononuclear, with dominant monodentate binding to organic moieties (C neighbors at ∼3.45 Å). An additional minor fraction of U under polymeric forms is inferred from wavelet (CCWT) analysis of the EXAFS data. These observations are reinforced by 1 M bicarbonate extractions that result in the dissolution of 82–96 % of total U, including putative polymeric species. At the wetland scale, similar or slightly fractionated isotopic ratios (δ238U) between the wetland-feeding creek waters and the wetland soils are observed, supporting the idea that U(VI) sorption on organic matter is the primary U scavenging mechanism. Furthermore, it indicates that partial U(VI) reduction to U(IV) occurs as a second step, after sorption. Analysis of U decay chain disequilibria in the cores as a function of depth suggests that U accumulation in this wetland has lasted for several thousand years. We propose that the wetland acts as an active reactor where U has been massively accumulating for ∼14500 years, especially as U(VI) forms associated to organic matter, and is further partly exported to the lake through soil erosion.
doi_str_mv 10.1016/j.gca.2022.10.018
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2006564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703722005579</els_id><sourcerecordid>S0016703722005579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-453da0ac1f2fa58ec90b2119ac936ef6d9043821c00a7257ca3ca8912f58c85e3</originalsourceid><addsrcrecordid>eNp9kM1LJDEQxcOi4PjxB3gLe_PQYyXp9AeeRHQVBvayc_ESyur0TIbuZEhnFP970zuLxz0V9fi94tVj7FrAUoCobnfLDeFSgpR5X4JofrCFaGpZtFqpE7aADBU1qPqMnU_TDgBqrWHBXtcRvTuMfApxn1zwPAUe4iaLxEdMyUaOvuND8JsiLyNHosN4GPAv7DxHvo9uSs5bjsN-Hh82DdlzyU57HCZ79W9esPXT45-H52L1-9fLw_2qwFKWqSi16hCQRC971I2lFt6kEC1SqyrbV10LpWqkIACspa4JFWHTCtnrhhpt1QX7ebwbcgozkUuWthS8t5SMBKh0VWbo5ghtcTA58Ijx0wR05vl-ZWYNVKO1VvpdZFYcWYphmqLtvw0CzNy22ZnctpnbnqXcdvbcHT02f_rubJyDWE-2c3HO0QX3H_cXj82HMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lefebvre, Pierre ; Le Pape, Pierre ; Mangeret, Arnaud ; Gourgiotis, Alkiviadis ; Sabatier, Pierre ; Louvat, Pascale ; Diez, Olivier ; Mathon, Olivier ; Hunault, Myrtille O.J.Y. ; Baya, Camille ; Darricau, Louise ; Cazala, Charlotte ; Bargar, John R. ; Gaillardet, Jérôme ; Morin, Guillaume</creator><creatorcontrib>Lefebvre, Pierre ; Le Pape, Pierre ; Mangeret, Arnaud ; Gourgiotis, Alkiviadis ; Sabatier, Pierre ; Louvat, Pascale ; Diez, Olivier ; Mathon, Olivier ; Hunault, Myrtille O.J.Y. ; Baya, Camille ; Darricau, Louise ; Cazala, Charlotte ; Bargar, John R. ; Gaillardet, Jérôme ; Morin, Guillaume ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline forms. However, questions remain on the respective roles of sorption and reduction processes in the removal of U from running waters in wetlands, as well as on the long-term stability of U storage. Here, we performed a series of geochemical, isotopic (δ238U, (234U/238U)), microscopic (SEM-EDXS, EPMA) and spectroscopic (µ-XRF, µ-XAS, XANES and EXAFS at the U L3 and M4-edges and Fe K-edge) investigations to determine the modes of U accumulation and assess U mobility in a natural exceptionally U-enriched (up to 5000 µg/g) wetland on the shore of Lake Nègre (Mediterranean Alps, France). Uranium (VI) was largely dominant in the two studied soil cores, except a few samples containing as much as ∼50 % U(IV). At the particle scale, U is associated to a variety of organic constituents of the soil matrix with a homogenous oxidation state. Bulk EXAFS spectroscopy at the U L3-edge shows that U is mostly mononuclear, with dominant monodentate binding to organic moieties (C neighbors at ∼3.45 Å). An additional minor fraction of U under polymeric forms is inferred from wavelet (CCWT) analysis of the EXAFS data. These observations are reinforced by 1 M bicarbonate extractions that result in the dissolution of 82–96 % of total U, including putative polymeric species. At the wetland scale, similar or slightly fractionated isotopic ratios (δ238U) between the wetland-feeding creek waters and the wetland soils are observed, supporting the idea that U(VI) sorption on organic matter is the primary U scavenging mechanism. Furthermore, it indicates that partial U(VI) reduction to U(IV) occurs as a second step, after sorption. Analysis of U decay chain disequilibria in the cores as a function of depth suggests that U accumulation in this wetland has lasted for several thousand years. We propose that the wetland acts as an active reactor where U has been massively accumulating for ∼14500 years, especially as U(VI) forms associated to organic matter, and is further partly exported to the lake through soil erosion.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2022.10.018</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Environmental Sciences ; Noncrystalline uranium ; RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT ; U(VI) polymeric species ; Uranium isotopes ; Uranium speciation ; Wetland</subject><ispartof>Geochimica et cosmochimica acta, 2022-12, Vol.338, p.322-346</ispartof><rights>2022 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-453da0ac1f2fa58ec90b2119ac936ef6d9043821c00a7257ca3ca8912f58c85e3</citedby><cites>FETCH-LOGICAL-a424t-453da0ac1f2fa58ec90b2119ac936ef6d9043821c00a7257ca3ca8912f58c85e3</cites><orcidid>0000-0002-9620-1514 ; 0000-0003-1972-0633 ; 0000-0002-8100-936X ; 0000-0001-7982-1159 ; 0000-0002-9910-9350 ; 0000-0002-2629-0400 ; 0000-0002-5715-4022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703722005579$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03855535$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2006564$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefebvre, Pierre</creatorcontrib><creatorcontrib>Le Pape, Pierre</creatorcontrib><creatorcontrib>Mangeret, Arnaud</creatorcontrib><creatorcontrib>Gourgiotis, Alkiviadis</creatorcontrib><creatorcontrib>Sabatier, Pierre</creatorcontrib><creatorcontrib>Louvat, Pascale</creatorcontrib><creatorcontrib>Diez, Olivier</creatorcontrib><creatorcontrib>Mathon, Olivier</creatorcontrib><creatorcontrib>Hunault, Myrtille O.J.Y.</creatorcontrib><creatorcontrib>Baya, Camille</creatorcontrib><creatorcontrib>Darricau, Louise</creatorcontrib><creatorcontrib>Cazala, Charlotte</creatorcontrib><creatorcontrib>Bargar, John R.</creatorcontrib><creatorcontrib>Gaillardet, Jérôme</creatorcontrib><creatorcontrib>Morin, Guillaume</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland</title><title>Geochimica et cosmochimica acta</title><description>Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline forms. However, questions remain on the respective roles of sorption and reduction processes in the removal of U from running waters in wetlands, as well as on the long-term stability of U storage. Here, we performed a series of geochemical, isotopic (δ238U, (234U/238U)), microscopic (SEM-EDXS, EPMA) and spectroscopic (µ-XRF, µ-XAS, XANES and EXAFS at the U L3 and M4-edges and Fe K-edge) investigations to determine the modes of U accumulation and assess U mobility in a natural exceptionally U-enriched (up to 5000 µg/g) wetland on the shore of Lake Nègre (Mediterranean Alps, France). Uranium (VI) was largely dominant in the two studied soil cores, except a few samples containing as much as ∼50 % U(IV). At the particle scale, U is associated to a variety of organic constituents of the soil matrix with a homogenous oxidation state. Bulk EXAFS spectroscopy at the U L3-edge shows that U is mostly mononuclear, with dominant monodentate binding to organic moieties (C neighbors at ∼3.45 Å). An additional minor fraction of U under polymeric forms is inferred from wavelet (CCWT) analysis of the EXAFS data. These observations are reinforced by 1 M bicarbonate extractions that result in the dissolution of 82–96 % of total U, including putative polymeric species. At the wetland scale, similar or slightly fractionated isotopic ratios (δ238U) between the wetland-feeding creek waters and the wetland soils are observed, supporting the idea that U(VI) sorption on organic matter is the primary U scavenging mechanism. Furthermore, it indicates that partial U(VI) reduction to U(IV) occurs as a second step, after sorption. Analysis of U decay chain disequilibria in the cores as a function of depth suggests that U accumulation in this wetland has lasted for several thousand years. We propose that the wetland acts as an active reactor where U has been massively accumulating for ∼14500 years, especially as U(VI) forms associated to organic matter, and is further partly exported to the lake through soil erosion.</description><subject>Environmental Sciences</subject><subject>Noncrystalline uranium</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</subject><subject>U(VI) polymeric species</subject><subject>Uranium isotopes</subject><subject>Uranium speciation</subject><subject>Wetland</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LJDEQxcOi4PjxB3gLe_PQYyXp9AeeRHQVBvayc_ESyur0TIbuZEhnFP970zuLxz0V9fi94tVj7FrAUoCobnfLDeFSgpR5X4JofrCFaGpZtFqpE7aADBU1qPqMnU_TDgBqrWHBXtcRvTuMfApxn1zwPAUe4iaLxEdMyUaOvuND8JsiLyNHosN4GPAv7DxHvo9uSs5bjsN-Hh82DdlzyU57HCZ79W9esPXT45-H52L1-9fLw_2qwFKWqSi16hCQRC971I2lFt6kEC1SqyrbV10LpWqkIACspa4JFWHTCtnrhhpt1QX7ebwbcgozkUuWthS8t5SMBKh0VWbo5ghtcTA58Ijx0wR05vl-ZWYNVKO1VvpdZFYcWYphmqLtvw0CzNy22ZnctpnbnqXcdvbcHT02f_rubJyDWE-2c3HO0QX3H_cXj82HMQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lefebvre, Pierre</creator><creator>Le Pape, Pierre</creator><creator>Mangeret, Arnaud</creator><creator>Gourgiotis, Alkiviadis</creator><creator>Sabatier, Pierre</creator><creator>Louvat, Pascale</creator><creator>Diez, Olivier</creator><creator>Mathon, Olivier</creator><creator>Hunault, Myrtille O.J.Y.</creator><creator>Baya, Camille</creator><creator>Darricau, Louise</creator><creator>Cazala, Charlotte</creator><creator>Bargar, John R.</creator><creator>Gaillardet, Jérôme</creator><creator>Morin, Guillaume</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier; The Geochemical Society; The Meteoritical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9620-1514</orcidid><orcidid>https://orcid.org/0000-0003-1972-0633</orcidid><orcidid>https://orcid.org/0000-0002-8100-936X</orcidid><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0002-9910-9350</orcidid><orcidid>https://orcid.org/0000-0002-2629-0400</orcidid><orcidid>https://orcid.org/0000-0002-5715-4022</orcidid></search><sort><creationdate>20221201</creationdate><title>Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland</title><author>Lefebvre, Pierre ; Le Pape, Pierre ; Mangeret, Arnaud ; Gourgiotis, Alkiviadis ; Sabatier, Pierre ; Louvat, Pascale ; Diez, Olivier ; Mathon, Olivier ; Hunault, Myrtille O.J.Y. ; Baya, Camille ; Darricau, Louise ; Cazala, Charlotte ; Bargar, John R. ; Gaillardet, Jérôme ; Morin, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-453da0ac1f2fa58ec90b2119ac936ef6d9043821c00a7257ca3ca8912f58c85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Environmental Sciences</topic><topic>Noncrystalline uranium</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</topic><topic>U(VI) polymeric species</topic><topic>Uranium isotopes</topic><topic>Uranium speciation</topic><topic>Wetland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefebvre, Pierre</creatorcontrib><creatorcontrib>Le Pape, Pierre</creatorcontrib><creatorcontrib>Mangeret, Arnaud</creatorcontrib><creatorcontrib>Gourgiotis, Alkiviadis</creatorcontrib><creatorcontrib>Sabatier, Pierre</creatorcontrib><creatorcontrib>Louvat, Pascale</creatorcontrib><creatorcontrib>Diez, Olivier</creatorcontrib><creatorcontrib>Mathon, Olivier</creatorcontrib><creatorcontrib>Hunault, Myrtille O.J.Y.</creatorcontrib><creatorcontrib>Baya, Camille</creatorcontrib><creatorcontrib>Darricau, Louise</creatorcontrib><creatorcontrib>Cazala, Charlotte</creatorcontrib><creatorcontrib>Bargar, John R.</creatorcontrib><creatorcontrib>Gaillardet, Jérôme</creatorcontrib><creatorcontrib>Morin, Guillaume</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefebvre, Pierre</au><au>Le Pape, Pierre</au><au>Mangeret, Arnaud</au><au>Gourgiotis, Alkiviadis</au><au>Sabatier, Pierre</au><au>Louvat, Pascale</au><au>Diez, Olivier</au><au>Mathon, Olivier</au><au>Hunault, Myrtille O.J.Y.</au><au>Baya, Camille</au><au>Darricau, Louise</au><au>Cazala, Charlotte</au><au>Bargar, John R.</au><au>Gaillardet, Jérôme</au><au>Morin, Guillaume</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>338</volume><spage>322</spage><epage>346</epage><pages>322-346</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline forms. However, questions remain on the respective roles of sorption and reduction processes in the removal of U from running waters in wetlands, as well as on the long-term stability of U storage. Here, we performed a series of geochemical, isotopic (δ238U, (234U/238U)), microscopic (SEM-EDXS, EPMA) and spectroscopic (µ-XRF, µ-XAS, XANES and EXAFS at the U L3 and M4-edges and Fe K-edge) investigations to determine the modes of U accumulation and assess U mobility in a natural exceptionally U-enriched (up to 5000 µg/g) wetland on the shore of Lake Nègre (Mediterranean Alps, France). Uranium (VI) was largely dominant in the two studied soil cores, except a few samples containing as much as ∼50 % U(IV). At the particle scale, U is associated to a variety of organic constituents of the soil matrix with a homogenous oxidation state. Bulk EXAFS spectroscopy at the U L3-edge shows that U is mostly mononuclear, with dominant monodentate binding to organic moieties (C neighbors at ∼3.45 Å). An additional minor fraction of U under polymeric forms is inferred from wavelet (CCWT) analysis of the EXAFS data. These observations are reinforced by 1 M bicarbonate extractions that result in the dissolution of 82–96 % of total U, including putative polymeric species. At the wetland scale, similar or slightly fractionated isotopic ratios (δ238U) between the wetland-feeding creek waters and the wetland soils are observed, supporting the idea that U(VI) sorption on organic matter is the primary U scavenging mechanism. Furthermore, it indicates that partial U(VI) reduction to U(IV) occurs as a second step, after sorption. Analysis of U decay chain disequilibria in the cores as a function of depth suggests that U accumulation in this wetland has lasted for several thousand years. We propose that the wetland acts as an active reactor where U has been massively accumulating for ∼14500 years, especially as U(VI) forms associated to organic matter, and is further partly exported to the lake through soil erosion.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2022.10.018</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9620-1514</orcidid><orcidid>https://orcid.org/0000-0003-1972-0633</orcidid><orcidid>https://orcid.org/0000-0002-8100-936X</orcidid><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0002-9910-9350</orcidid><orcidid>https://orcid.org/0000-0002-2629-0400</orcidid><orcidid>https://orcid.org/0000-0002-5715-4022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2022-12, Vol.338, p.322-346
issn 0016-7037
1872-9533
language eng
recordid cdi_osti_scitechconnect_2006564
source Elsevier ScienceDirect Journals Complete
subjects Environmental Sciences
Noncrystalline uranium
RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT
U(VI) polymeric species
Uranium isotopes
Uranium speciation
Wetland
title Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium%20sorption%20to%20organic%20matter%20and%20long-term%20accumulation%20in%20a%20pristine%20alpine%20wetland&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Lefebvre,%20Pierre&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2022-12-01&rft.volume=338&rft.spage=322&rft.epage=346&rft.pages=322-346&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2022.10.018&rft_dat=%3Celsevier_osti_%3ES0016703722005579%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016703722005579&rfr_iscdi=true