Generalized Discrete Spherical Harmonic Transforms

Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geoph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2000-04, Vol.159 (2), p.213-230
Hauptverfasser: Swarztrauber, Paul N., Spotz, William F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 2
container_start_page 213
container_title Journal of computational physics
container_volume 159
creator Swarztrauber, Paul N.
Spotz, William F.
description Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.
doi_str_mv 10.1006/jcph.2000.6431
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20030409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999100964313</els_id><sourcerecordid>27533747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EEqWwMkdCYkt4_ZEPj6hAi1SJgTJbrvNadZXEwU6R4NeTKKxMtzx3ujtCbilkFKB4OJr-kDEAyArB6RlZUJCQspIW52QBwGgqpaSX5CrG40hVuagWhK2xw6Ab94N18uSiCThg8t4fMDijm2SjQ-s7Z5Jd0F20PrTxmlxY3US8-dMl-Xh53q026fZt_bp63KaGi3xI66LMac4l8KriVNbU1paiLLFglaVSSBQC6j3mDC2DghvNcqur_Z7bnLGS8yW5m3N9HJyKxg1oDsZ3HZpBjTs5CJAjdT9TffCfJ4yDascV2DS6Q3-KipU556UoRzCbQRN8jAGt6oNrdfhWFNR0oJoOnIJBTQeOhmo24Djyy2GYOmBnsHZhqlB795_1FwI6dUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27533747</pqid></control><display><type>article</type><title>Generalized Discrete Spherical Harmonic Transforms</title><source>Elsevier ScienceDirect Journals</source><creator>Swarztrauber, Paul N. ; Spotz, William F.</creator><creatorcontrib>Swarztrauber, Paul N. ; Spotz, William F. ; National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><description>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.2000.6431</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>FUNCTIONS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; LEGENDRE POLYNOMIALS ; SPHERICAL HARMONICS ; TRANSFORMATIONS</subject><ispartof>Journal of computational physics, 2000-04, Vol.159 (2), p.213-230</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</citedby><cites>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999100964313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20030409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><creatorcontrib>Spotz, William F.</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><title>Generalized Discrete Spherical Harmonic Transforms</title><title>Journal of computational physics</title><description>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</description><subject>FUNCTIONS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>LEGENDRE POLYNOMIALS</subject><subject>SPHERICAL HARMONICS</subject><subject>TRANSFORMATIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAYhC0EEqWwMkdCYkt4_ZEPj6hAi1SJgTJbrvNadZXEwU6R4NeTKKxMtzx3ujtCbilkFKB4OJr-kDEAyArB6RlZUJCQspIW52QBwGgqpaSX5CrG40hVuagWhK2xw6Ab94N18uSiCThg8t4fMDijm2SjQ-s7Z5Jd0F20PrTxmlxY3US8-dMl-Xh53q026fZt_bp63KaGi3xI66LMac4l8KriVNbU1paiLLFglaVSSBQC6j3mDC2DghvNcqur_Z7bnLGS8yW5m3N9HJyKxg1oDsZ3HZpBjTs5CJAjdT9TffCfJ4yDascV2DS6Q3-KipU556UoRzCbQRN8jAGt6oNrdfhWFNR0oJoOnIJBTQeOhmo24Djyy2GYOmBnsHZhqlB795_1FwI6dUc</recordid><startdate>20000410</startdate><enddate>20000410</enddate><creator>Swarztrauber, Paul N.</creator><creator>Spotz, William F.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20000410</creationdate><title>Generalized Discrete Spherical Harmonic Transforms</title><author>Swarztrauber, Paul N. ; Spotz, William F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>FUNCTIONS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>LEGENDRE POLYNOMIALS</topic><topic>SPHERICAL HARMONICS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><creatorcontrib>Spotz, William F.</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swarztrauber, Paul N.</au><au>Spotz, William F.</au><aucorp>National Center for Atmospheric Research, Boulder, CO (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Discrete Spherical Harmonic Transforms</atitle><jtitle>Journal of computational physics</jtitle><date>2000-04-10</date><risdate>2000</risdate><volume>159</volume><issue>2</issue><spage>213</spage><epage>230</epage><pages>213-230</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.2000.6431</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2000-04, Vol.159 (2), p.213-230
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_20030409
source Elsevier ScienceDirect Journals
subjects FUNCTIONS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
LEGENDRE POLYNOMIALS
SPHERICAL HARMONICS
TRANSFORMATIONS
title Generalized Discrete Spherical Harmonic Transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Discrete%20Spherical%20Harmonic%20Transforms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Swarztrauber,%20Paul%20N.&rft.aucorp=National%20Center%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(US)&rft.date=2000-04-10&rft.volume=159&rft.issue=2&rft.spage=213&rft.epage=230&rft.pages=213-230&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.2000.6431&rft_dat=%3Cproquest_osti_%3E27533747%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27533747&rft_id=info:pmid/&rft_els_id=S0021999100964313&rfr_iscdi=true