Generalized Discrete Spherical Harmonic Transforms
Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geoph...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2000-04, Vol.159 (2), p.213-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 2 |
container_start_page | 213 |
container_title | Journal of computational physics |
container_volume | 159 |
creator | Swarztrauber, Paul N. Spotz, William F. |
description | Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms. |
doi_str_mv | 10.1006/jcph.2000.6431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20030409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999100964313</els_id><sourcerecordid>27533747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EEqWwMkdCYkt4_ZEPj6hAi1SJgTJbrvNadZXEwU6R4NeTKKxMtzx3ujtCbilkFKB4OJr-kDEAyArB6RlZUJCQspIW52QBwGgqpaSX5CrG40hVuagWhK2xw6Ab94N18uSiCThg8t4fMDijm2SjQ-s7Z5Jd0F20PrTxmlxY3US8-dMl-Xh53q026fZt_bp63KaGi3xI66LMac4l8KriVNbU1paiLLFglaVSSBQC6j3mDC2DghvNcqur_Z7bnLGS8yW5m3N9HJyKxg1oDsZ3HZpBjTs5CJAjdT9TffCfJ4yDascV2DS6Q3-KipU556UoRzCbQRN8jAGt6oNrdfhWFNR0oJoOnIJBTQeOhmo24Djyy2GYOmBnsHZhqlB795_1FwI6dUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27533747</pqid></control><display><type>article</type><title>Generalized Discrete Spherical Harmonic Transforms</title><source>Elsevier ScienceDirect Journals</source><creator>Swarztrauber, Paul N. ; Spotz, William F.</creator><creatorcontrib>Swarztrauber, Paul N. ; Spotz, William F. ; National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><description>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.2000.6431</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>FUNCTIONS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; LEGENDRE POLYNOMIALS ; SPHERICAL HARMONICS ; TRANSFORMATIONS</subject><ispartof>Journal of computational physics, 2000-04, Vol.159 (2), p.213-230</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</citedby><cites>FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999100964313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20030409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><creatorcontrib>Spotz, William F.</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><title>Generalized Discrete Spherical Harmonic Transforms</title><title>Journal of computational physics</title><description>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</description><subject>FUNCTIONS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>LEGENDRE POLYNOMIALS</subject><subject>SPHERICAL HARMONICS</subject><subject>TRANSFORMATIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAYhC0EEqWwMkdCYkt4_ZEPj6hAi1SJgTJbrvNadZXEwU6R4NeTKKxMtzx3ujtCbilkFKB4OJr-kDEAyArB6RlZUJCQspIW52QBwGgqpaSX5CrG40hVuagWhK2xw6Ab94N18uSiCThg8t4fMDijm2SjQ-s7Z5Jd0F20PrTxmlxY3US8-dMl-Xh53q026fZt_bp63KaGi3xI66LMac4l8KriVNbU1paiLLFglaVSSBQC6j3mDC2DghvNcqur_Z7bnLGS8yW5m3N9HJyKxg1oDsZ3HZpBjTs5CJAjdT9TffCfJ4yDascV2DS6Q3-KipU556UoRzCbQRN8jAGt6oNrdfhWFNR0oJoOnIJBTQeOhmo24Djyy2GYOmBnsHZhqlB795_1FwI6dUc</recordid><startdate>20000410</startdate><enddate>20000410</enddate><creator>Swarztrauber, Paul N.</creator><creator>Spotz, William F.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20000410</creationdate><title>Generalized Discrete Spherical Harmonic Transforms</title><author>Swarztrauber, Paul N. ; Spotz, William F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-d67515390388319d1fdf1e97e628f1949e440dbe52ef2063ca25fa8bb3f522733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>FUNCTIONS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>LEGENDRE POLYNOMIALS</topic><topic>SPHERICAL HARMONICS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><creatorcontrib>Spotz, William F.</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (US)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swarztrauber, Paul N.</au><au>Spotz, William F.</au><aucorp>National Center for Atmospheric Research, Boulder, CO (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Discrete Spherical Harmonic Transforms</atitle><jtitle>Journal of computational physics</jtitle><date>2000-04-10</date><risdate>2000</risdate><volume>159</volume><issue>2</issue><spage>213</spage><epage>230</epage><pages>213-230</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Two generalizations of the spherical harmonic transforms are provided. First, they are generalized to an arbitrary distribution of latitudinal points θi. This unifies transforms for Gaussian and equally spaced distributions and provides transforms for other distributions commonly used to model geophysical phenomena. The discrete associated Legendre functions Pnm(θi) are shown to be orthogonal, to within roundoff error, with respect to a weighted inner product, thus providing the forward transform to spectral space. Second, the representation of the transforms is also generalized to rotations of the discrete basis set Pnm(θi. A discrete function basis is defined that provides an alternative to Pnm(θi. On a grid with N latitudes, the new basis requires O(N2) memory compared to the usual O(N3). The resulting transforms differ in spectral space but provide identical results for certain applications. For example, a forward transform followed immediately by a backward transform projects the original discrete function in a manner identical to the existing transforms. Namely, they both project the original function onto the same smooth least squares approximation without the high frequencies induced by the closeness of the points in the neighborhood of the poles. Finally, a faster projection is developed based on the new transforms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.2000.6431</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2000-04, Vol.159 (2), p.213-230 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_20030409 |
source | Elsevier ScienceDirect Journals |
subjects | FUNCTIONS GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE LEGENDRE POLYNOMIALS SPHERICAL HARMONICS TRANSFORMATIONS |
title | Generalized Discrete Spherical Harmonic Transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Discrete%20Spherical%20Harmonic%20Transforms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Swarztrauber,%20Paul%20N.&rft.aucorp=National%20Center%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(US)&rft.date=2000-04-10&rft.volume=159&rft.issue=2&rft.spage=213&rft.epage=230&rft.pages=213-230&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.2000.6431&rft_dat=%3Cproquest_osti_%3E27533747%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27533747&rft_id=info:pmid/&rft_els_id=S0021999100964313&rfr_iscdi=true |