Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser-shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hol...
Gespeichert in:
Veröffentlicht in: | Journal of turbomachinery 2000-01, Vol.122 (1), p.146-152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser-shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hole axis was inclined 30 deg with respect to the direction of the external (hot gas) flow. The flow conditions considered were the hot gas crossflow Mach number (up to 0.6), the coolant crossflow Mach number (up to 0.6) and the pressure ratio across the hole (up to 2). The effect of internal crossflow approach direction, perpendicular or parallel to the main flow direction, is particularly addressed in the present study. Comparison is made of the results for a parallel and perpendicular orientation, showing that the coolant crossflow orientation has a strong impact on the discharge behavior of the different hole geometries. The discharge coefficients were found to strongly depend on both hole geometry and crossflow conditions. Furthermore, the effects of internal and external crossflow on the discharge coefficients were described by means of correlations used to derive a predicting scheme for discharge coefficients. A comparison between predictions and measurements reveals the capability of the method proposed. [S0889-504X(00)01601-9] |
---|---|
ISSN: | 0889-504X 1528-8900 |
DOI: | 10.1115/1.555436 |