Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 1999-01, Vol.19 (7), p.453-465
Hauptverfasser: Spence, R.D, Gilliam, T.M, Mattus, C.H, Mattus, A.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 7
container_start_page 453
container_title Waste management (Elmsford)
container_volume 19
creator Spence, R.D
Gilliam, T.M
Mattus, C.H
Mattus, A.J
description Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving a volume increase of about 40–50 vol%. Dried sludge was vitrified into glass at waste oxide loadings of 40–50 wt%, giving a volume decrease of about 50–60 vol%. The Resource Conservation and Recovery Act (RCRA) metals included in surrogate testing were Ag, Ba, Cd, Cr, Ni, Pb, Se, Tl and Hg. Since vitrification would volatilize, not stabilize mercury, it was not included in the surrogates vitrified. The actual sludge sample was only characteristically hazardous for mercury by the toxic characteristic leaching procedure (TCLP) but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout and glass formulations stabilized these RCRA metals within UTS limits. In addition, a grout leachability index of about 9–10 was measured for both 85Sr and 137Cs, meeting the recommended requirement of >6. The glass leachability index was estimated to be >18 for cold cesium and strontium.
doi_str_mv 10.1016/S0956-053X(99)00237-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20018989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956053X99002378</els_id><sourcerecordid>17440886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-3c5c82c0859329ddd5eae97e2703880e9b4e3a185e4aaecf6a262f1e23b434223</originalsourceid><addsrcrecordid>eNqFkEtrFEEQgAcx4Br9CcKAIuYwpp8z3ScJwaiwkEMUvDW13TVrS-907OpRk1_v7G7Qo6eiiq9eX9O84OwtZ7w_v2FW9x3T8usba88YE3LozKNmxc1gO6F0_7hZ_UWeNE-JvjPGleFs1eAaNrlAzeWupQqbmOI91Jinc8ophjhGf0jbPLY0l5K3ULGFKbTg6wyp3cXfGLpfQEuZ0hy22Map3SYgOmDbkuf6rDkZIRE-f4inzZer958vP3br6w-fLi_WnVdG1k567Y3wzGgrhQ0haAS0A4qBSWMY2o1CCdxoVADoxx5EL0aOQm6UVELI0-blcW6mGh35WNF_83ma0FcnlqeNNXahXh-p25J_zEjV7SJ5TAkmzDM5PijFjOkXUB9BXzJRwdHdlriDcuc4c3v17qDe7b06a91BvTNL36uHBUAe0lhg8pH-NXOj-kEv2LsjhouSnxHL_mKcPIZY9geHHP-z6A82tJm8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17440886</pqid></control><display><type>article</type><title>Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spence, R.D ; Gilliam, T.M ; Mattus, C.H ; Mattus, A.J</creator><creatorcontrib>Spence, R.D ; Gilliam, T.M ; Mattus, C.H ; Mattus, A.J ; Oak Ridge National Lab., TN (US)</creatorcontrib><description>Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving a volume increase of about 40–50 vol%. Dried sludge was vitrified into glass at waste oxide loadings of 40–50 wt%, giving a volume decrease of about 50–60 vol%. The Resource Conservation and Recovery Act (RCRA) metals included in surrogate testing were Ag, Ba, Cd, Cr, Ni, Pb, Se, Tl and Hg. Since vitrification would volatilize, not stabilize mercury, it was not included in the surrogates vitrified. The actual sludge sample was only characteristically hazardous for mercury by the toxic characteristic leaching procedure (TCLP) but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout and glass formulations stabilized these RCRA metals within UTS limits. In addition, a grout leachability index of about 9–10 was measured for both 85Sr and 137Cs, meeting the recommended requirement of &gt;6. The glass leachability index was estimated to be &gt;18 for cold cesium and strontium.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/S0956-053X(99)00237-8</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>137Cs ; 85Sr ; Applied sciences ; BARIUM ; BENCH-SCALE EXPERIMENTS ; CADMIUM ; CESIUM 137 ; CHROMIUM ; Exact sciences and technology ; GLASS ; Grout ; HIGH-LEVEL RADIOACTIVE WASTES ; LEAD ; MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ; MERCURY ; Mixed waste ; MIXTURES ; NICKEL ; Pollution ; RADIOACTIVE WASTE PROCESSING ; Radioactive wastes ; RCRA metals ; SELENIUM ; SILVER ; SLUDGES ; SOLIDIFICATION ; STABILIZATION ; STRONTIUM 85 ; THALLIUM ; Wastes</subject><ispartof>Waste management (Elmsford), 1999-01, Vol.19 (7), p.453-465</ispartof><rights>1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-3c5c82c0859329ddd5eae97e2703880e9b4e3a185e4aaecf6a262f1e23b434223</citedby><cites>FETCH-LOGICAL-c483t-3c5c82c0859329ddd5eae97e2703880e9b4e3a185e4aaecf6a262f1e23b434223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0956-053X(99)00237-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1184675$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20018989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spence, R.D</creatorcontrib><creatorcontrib>Gilliam, T.M</creatorcontrib><creatorcontrib>Mattus, C.H</creatorcontrib><creatorcontrib>Mattus, A.J</creatorcontrib><creatorcontrib>Oak Ridge National Lab., TN (US)</creatorcontrib><title>Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout</title><title>Waste management (Elmsford)</title><description>Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving a volume increase of about 40–50 vol%. Dried sludge was vitrified into glass at waste oxide loadings of 40–50 wt%, giving a volume decrease of about 50–60 vol%. The Resource Conservation and Recovery Act (RCRA) metals included in surrogate testing were Ag, Ba, Cd, Cr, Ni, Pb, Se, Tl and Hg. Since vitrification would volatilize, not stabilize mercury, it was not included in the surrogates vitrified. The actual sludge sample was only characteristically hazardous for mercury by the toxic characteristic leaching procedure (TCLP) but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout and glass formulations stabilized these RCRA metals within UTS limits. In addition, a grout leachability index of about 9–10 was measured for both 85Sr and 137Cs, meeting the recommended requirement of &gt;6. The glass leachability index was estimated to be &gt;18 for cold cesium and strontium.</description><subject>137Cs</subject><subject>85Sr</subject><subject>Applied sciences</subject><subject>BARIUM</subject><subject>BENCH-SCALE EXPERIMENTS</subject><subject>CADMIUM</subject><subject>CESIUM 137</subject><subject>CHROMIUM</subject><subject>Exact sciences and technology</subject><subject>GLASS</subject><subject>Grout</subject><subject>HIGH-LEVEL RADIOACTIVE WASTES</subject><subject>LEAD</subject><subject>MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</subject><subject>MERCURY</subject><subject>Mixed waste</subject><subject>MIXTURES</subject><subject>NICKEL</subject><subject>Pollution</subject><subject>RADIOACTIVE WASTE PROCESSING</subject><subject>Radioactive wastes</subject><subject>RCRA metals</subject><subject>SELENIUM</subject><subject>SILVER</subject><subject>SLUDGES</subject><subject>SOLIDIFICATION</subject><subject>STABILIZATION</subject><subject>STRONTIUM 85</subject><subject>THALLIUM</subject><subject>Wastes</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrFEEQgAcx4Br9CcKAIuYwpp8z3ScJwaiwkEMUvDW13TVrS-907OpRk1_v7G7Qo6eiiq9eX9O84OwtZ7w_v2FW9x3T8usba88YE3LozKNmxc1gO6F0_7hZ_UWeNE-JvjPGleFs1eAaNrlAzeWupQqbmOI91Jinc8ophjhGf0jbPLY0l5K3ULGFKbTg6wyp3cXfGLpfQEuZ0hy22Map3SYgOmDbkuf6rDkZIRE-f4inzZer958vP3br6w-fLi_WnVdG1k567Y3wzGgrhQ0haAS0A4qBSWMY2o1CCdxoVADoxx5EL0aOQm6UVELI0-blcW6mGh35WNF_83ma0FcnlqeNNXahXh-p25J_zEjV7SJ5TAkmzDM5PijFjOkXUB9BXzJRwdHdlriDcuc4c3v17qDe7b06a91BvTNL36uHBUAe0lhg8pH-NXOj-kEv2LsjhouSnxHL_mKcPIZY9geHHP-z6A82tJm8</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Spence, R.D</creator><creator>Gilliam, T.M</creator><creator>Mattus, C.H</creator><creator>Mattus, A.J</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>19990101</creationdate><title>Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout</title><author>Spence, R.D ; Gilliam, T.M ; Mattus, C.H ; Mattus, A.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-3c5c82c0859329ddd5eae97e2703880e9b4e3a185e4aaecf6a262f1e23b434223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>137Cs</topic><topic>85Sr</topic><topic>Applied sciences</topic><topic>BARIUM</topic><topic>BENCH-SCALE EXPERIMENTS</topic><topic>CADMIUM</topic><topic>CESIUM 137</topic><topic>CHROMIUM</topic><topic>Exact sciences and technology</topic><topic>GLASS</topic><topic>Grout</topic><topic>HIGH-LEVEL RADIOACTIVE WASTES</topic><topic>LEAD</topic><topic>MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</topic><topic>MERCURY</topic><topic>Mixed waste</topic><topic>MIXTURES</topic><topic>NICKEL</topic><topic>Pollution</topic><topic>RADIOACTIVE WASTE PROCESSING</topic><topic>Radioactive wastes</topic><topic>RCRA metals</topic><topic>SELENIUM</topic><topic>SILVER</topic><topic>SLUDGES</topic><topic>SOLIDIFICATION</topic><topic>STABILIZATION</topic><topic>STRONTIUM 85</topic><topic>THALLIUM</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spence, R.D</creatorcontrib><creatorcontrib>Gilliam, T.M</creatorcontrib><creatorcontrib>Mattus, C.H</creatorcontrib><creatorcontrib>Mattus, A.J</creatorcontrib><creatorcontrib>Oak Ridge National Lab., TN (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spence, R.D</au><au>Gilliam, T.M</au><au>Mattus, C.H</au><au>Mattus, A.J</au><aucorp>Oak Ridge National Lab., TN (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout</atitle><jtitle>Waste management (Elmsford)</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>19</volume><issue>7</issue><spage>453</spage><epage>465</epage><pages>453-465</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving a volume increase of about 40–50 vol%. Dried sludge was vitrified into glass at waste oxide loadings of 40–50 wt%, giving a volume decrease of about 50–60 vol%. The Resource Conservation and Recovery Act (RCRA) metals included in surrogate testing were Ag, Ba, Cd, Cr, Ni, Pb, Se, Tl and Hg. Since vitrification would volatilize, not stabilize mercury, it was not included in the surrogates vitrified. The actual sludge sample was only characteristically hazardous for mercury by the toxic characteristic leaching procedure (TCLP) but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout and glass formulations stabilized these RCRA metals within UTS limits. In addition, a grout leachability index of about 9–10 was measured for both 85Sr and 137Cs, meeting the recommended requirement of &gt;6. The glass leachability index was estimated to be &gt;18 for cold cesium and strontium.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0956-053X(99)00237-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-053X
ispartof Waste management (Elmsford), 1999-01, Vol.19 (7), p.453-465
issn 0956-053X
1879-2456
language eng
recordid cdi_osti_scitechconnect_20018989
source Access via ScienceDirect (Elsevier)
subjects 137Cs
85Sr
Applied sciences
BARIUM
BENCH-SCALE EXPERIMENTS
CADMIUM
CESIUM 137
CHROMIUM
Exact sciences and technology
GLASS
Grout
HIGH-LEVEL RADIOACTIVE WASTES
LEAD
MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
MERCURY
Mixed waste
MIXTURES
NICKEL
Pollution
RADIOACTIVE WASTE PROCESSING
Radioactive wastes
RCRA metals
SELENIUM
SILVER
SLUDGES
SOLIDIFICATION
STABILIZATION
STRONTIUM 85
THALLIUM
Wastes
title Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laboratory%20stabilization/solidification%20of%20surrogate%20and%20actual%20mixed-waste%20sludge%20in%20glass%20and%20grout&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Spence,%20R.D&rft.aucorp=Oak%20Ridge%20National%20Lab.,%20TN%20(US)&rft.date=1999-01-01&rft.volume=19&rft.issue=7&rft.spage=453&rft.epage=465&rft.pages=453-465&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/S0956-053X(99)00237-8&rft_dat=%3Cproquest_osti_%3E17440886%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17440886&rft_id=info:pmid/&rft_els_id=S0956053X99002378&rfr_iscdi=true