Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz

A thermographic infrared detection system has been used to measure the temperature profiles during fatigue testing of specimens of reactor pressure vessel steels at 1000 Hz and 20 Hz. Four stages of temperature profiles were observed during fatigue testing: an initial increase of the average specime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2000-01, Vol.42 (4), p.389-395
Hauptverfasser: Liaw, P.K, Wang, H, Jiang, L, Yang, B, Huang, J.Y, Kuo, R.C, Huang, J.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 4
container_start_page 389
container_title Scripta materialia
container_volume 42
creator Liaw, P.K
Wang, H
Jiang, L
Yang, B
Huang, J.Y
Kuo, R.C
Huang, J.G
description A thermographic infrared detection system has been used to measure the temperature profiles during fatigue testing of specimens of reactor pressure vessel steels at 1000 Hz and 20 Hz. Four stages of temperature profiles were observed during fatigue testing: an initial increase of the average specimen temperature, an equilibrium-temperature region, an abrupt increase of the temperature, and a drop of the temperature following specimen failure. Temperature oscillation was observed within each fatigue cycle. An image subtraction technique in the infrared detection system can be used to monitor crack initiation and propagation behavior. At 1000 Hz, the equilibrium temperature can reach > 95 deg C, depending on the applied maximum stress level, while at 20 Hz, it approachs only approx23-24 deg C. The much greater temperature generated at 1000 Hz than 20 Hz could contribute to the shorter fatigue life at 1000 Hz.
doi_str_mv 10.1016/S1359-6462(99)00358-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20015215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646299003589</els_id><sourcerecordid>27781979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-86bfb39102ad210736db4db3b19311a22936699f14272eaae35b7dc0b1b8d053</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsoqKsfQQgoomA1k7RpcxIR_4Hgwb14Cmky3Y10mzXpCvrpTV3Fo6cZht_Me_Oy7ADoOVAQF8_AS5mLQrATKU8p5WWdy41sB-qK5XVRis3U_yLb2W6Mr5RSAQx2spfpHMPCz4Jezp0hFgc0g_M98S1p9eBmKyRWL_QMx8kyYIyrgOQ9VexIHBC7SPRA4CydJPefRPeWsLHby7Za3UXc_6mTbHp7M72-zx-f7h6urx5zUwgY8lo0bcMlUKYtA1pxYZvCNrwByQE0Y5ILIWULBasYao28bCpraANNbWnJJ9nh-qyPg1PRuPTA3Pi-T38oRimUDEbqeE0tg39bYRzUwkWDXad79KuoWFXVICuZwHINmuBjDNiqZXALHT4UUDWmrb7TVmOUSkr1nbYa945-BHQ0umuD7o2Lf8usTgo0YZdrLMWG7w7D6Bh7g9aF0bD17h-hL_l3kRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27781979</pqid></control><display><type>article</type><title>Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liaw, P.K ; Wang, H ; Jiang, L ; Yang, B ; Huang, J.Y ; Kuo, R.C ; Huang, J.G</creator><creatorcontrib>Liaw, P.K ; Wang, H ; Jiang, L ; Yang, B ; Huang, J.Y ; Kuo, R.C ; Huang, J.G ; Univ. of Tennessee, Knoxville, TN (US)</creatorcontrib><description>A thermographic infrared detection system has been used to measure the temperature profiles during fatigue testing of specimens of reactor pressure vessel steels at 1000 Hz and 20 Hz. Four stages of temperature profiles were observed during fatigue testing: an initial increase of the average specimen temperature, an equilibrium-temperature region, an abrupt increase of the temperature, and a drop of the temperature following specimen failure. Temperature oscillation was observed within each fatigue cycle. An image subtraction technique in the infrared detection system can be used to monitor crack initiation and propagation behavior. At 1000 Hz, the equilibrium temperature can reach &gt; 95 deg C, depending on the applied maximum stress level, while at 20 Hz, it approachs only approx23-24 deg C. The much greater temperature generated at 1000 Hz than 20 Hz could contribute to the shorter fatigue life at 1000 Hz.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/S1359-6462(99)00358-9</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; FATIGUE ; FREQUENCY DEPENDENCE ; Infrared (IR) spectroscopy ; INFRARED RADIATION ; MARTENSITE ; MATERIALS SCIENCE ; Materials testing ; Metals. Metallurgy ; Nondestructive evaluation ; Nondestructive testing: electromagnetic testing, eddy-current testing ; Physics ; PRESSURE VESSELS ; STEELS ; THERMOGRAPHY</subject><ispartof>Scripta materialia, 2000-01, Vol.42 (4), p.389-395</ispartof><rights>2000 Acta Metallurgica Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-86bfb39102ad210736db4db3b19311a22936699f14272eaae35b7dc0b1b8d053</citedby><cites>FETCH-LOGICAL-c461t-86bfb39102ad210736db4db3b19311a22936699f14272eaae35b7dc0b1b8d053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6462(99)00358-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1287780$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20015215$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liaw, P.K</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Yang, B</creatorcontrib><creatorcontrib>Huang, J.Y</creatorcontrib><creatorcontrib>Kuo, R.C</creatorcontrib><creatorcontrib>Huang, J.G</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (US)</creatorcontrib><title>Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz</title><title>Scripta materialia</title><description>A thermographic infrared detection system has been used to measure the temperature profiles during fatigue testing of specimens of reactor pressure vessel steels at 1000 Hz and 20 Hz. Four stages of temperature profiles were observed during fatigue testing: an initial increase of the average specimen temperature, an equilibrium-temperature region, an abrupt increase of the temperature, and a drop of the temperature following specimen failure. Temperature oscillation was observed within each fatigue cycle. An image subtraction technique in the infrared detection system can be used to monitor crack initiation and propagation behavior. At 1000 Hz, the equilibrium temperature can reach &gt; 95 deg C, depending on the applied maximum stress level, while at 20 Hz, it approachs only approx23-24 deg C. The much greater temperature generated at 1000 Hz than 20 Hz could contribute to the shorter fatigue life at 1000 Hz.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>FATIGUE</subject><subject>FREQUENCY DEPENDENCE</subject><subject>Infrared (IR) spectroscopy</subject><subject>INFRARED RADIATION</subject><subject>MARTENSITE</subject><subject>MATERIALS SCIENCE</subject><subject>Materials testing</subject><subject>Metals. Metallurgy</subject><subject>Nondestructive evaluation</subject><subject>Nondestructive testing: electromagnetic testing, eddy-current testing</subject><subject>Physics</subject><subject>PRESSURE VESSELS</subject><subject>STEELS</subject><subject>THERMOGRAPHY</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYsoqKsfQQgoomA1k7RpcxIR_4Hgwb14Cmky3Y10mzXpCvrpTV3Fo6cZht_Me_Oy7ADoOVAQF8_AS5mLQrATKU8p5WWdy41sB-qK5XVRis3U_yLb2W6Mr5RSAQx2spfpHMPCz4Jezp0hFgc0g_M98S1p9eBmKyRWL_QMx8kyYIyrgOQ9VexIHBC7SPRA4CydJPefRPeWsLHby7Za3UXc_6mTbHp7M72-zx-f7h6urx5zUwgY8lo0bcMlUKYtA1pxYZvCNrwByQE0Y5ILIWULBasYao28bCpraANNbWnJJ9nh-qyPg1PRuPTA3Pi-T38oRimUDEbqeE0tg39bYRzUwkWDXad79KuoWFXVICuZwHINmuBjDNiqZXALHT4UUDWmrb7TVmOUSkr1nbYa945-BHQ0umuD7o2Lf8usTgo0YZdrLMWG7w7D6Bh7g9aF0bD17h-hL_l3kRE</recordid><startdate>20000131</startdate><enddate>20000131</enddate><creator>Liaw, P.K</creator><creator>Wang, H</creator><creator>Jiang, L</creator><creator>Yang, B</creator><creator>Huang, J.Y</creator><creator>Kuo, R.C</creator><creator>Huang, J.G</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20000131</creationdate><title>Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz</title><author>Liaw, P.K ; Wang, H ; Jiang, L ; Yang, B ; Huang, J.Y ; Kuo, R.C ; Huang, J.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-86bfb39102ad210736db4db3b19311a22936699f14272eaae35b7dc0b1b8d053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>FATIGUE</topic><topic>FREQUENCY DEPENDENCE</topic><topic>Infrared (IR) spectroscopy</topic><topic>INFRARED RADIATION</topic><topic>MARTENSITE</topic><topic>MATERIALS SCIENCE</topic><topic>Materials testing</topic><topic>Metals. Metallurgy</topic><topic>Nondestructive evaluation</topic><topic>Nondestructive testing: electromagnetic testing, eddy-current testing</topic><topic>Physics</topic><topic>PRESSURE VESSELS</topic><topic>STEELS</topic><topic>THERMOGRAPHY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liaw, P.K</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Yang, B</creatorcontrib><creatorcontrib>Huang, J.Y</creatorcontrib><creatorcontrib>Kuo, R.C</creatorcontrib><creatorcontrib>Huang, J.G</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liaw, P.K</au><au>Wang, H</au><au>Jiang, L</au><au>Yang, B</au><au>Huang, J.Y</au><au>Kuo, R.C</au><au>Huang, J.G</au><aucorp>Univ. of Tennessee, Knoxville, TN (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz</atitle><jtitle>Scripta materialia</jtitle><date>2000-01-31</date><risdate>2000</risdate><volume>42</volume><issue>4</issue><spage>389</spage><epage>395</epage><pages>389-395</pages><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>A thermographic infrared detection system has been used to measure the temperature profiles during fatigue testing of specimens of reactor pressure vessel steels at 1000 Hz and 20 Hz. Four stages of temperature profiles were observed during fatigue testing: an initial increase of the average specimen temperature, an equilibrium-temperature region, an abrupt increase of the temperature, and a drop of the temperature following specimen failure. Temperature oscillation was observed within each fatigue cycle. An image subtraction technique in the infrared detection system can be used to monitor crack initiation and propagation behavior. At 1000 Hz, the equilibrium temperature can reach &gt; 95 deg C, depending on the applied maximum stress level, while at 20 Hz, it approachs only approx23-24 deg C. The much greater temperature generated at 1000 Hz than 20 Hz could contribute to the shorter fatigue life at 1000 Hz.</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6462(99)00358-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6462
ispartof Scripta materialia, 2000-01, Vol.42 (4), p.389-395
issn 1359-6462
1872-8456
language eng
recordid cdi_osti_scitechconnect_20015215
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
FATIGUE
FREQUENCY DEPENDENCE
Infrared (IR) spectroscopy
INFRARED RADIATION
MARTENSITE
MATERIALS SCIENCE
Materials testing
Metals. Metallurgy
Nondestructive evaluation
Nondestructive testing: electromagnetic testing, eddy-current testing
Physics
PRESSURE VESSELS
STEELS
THERMOGRAPHY
title Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermographic%20detection%20of%20fatigue%20damage%20of%20pressure%20vessel%20steels%20at%201,000%20Hz%20and%2020%20Hz&rft.jtitle=Scripta%20materialia&rft.au=Liaw,%20P.K&rft.aucorp=Univ.%20of%20Tennessee,%20Knoxville,%20TN%20(US)&rft.date=2000-01-31&rft.volume=42&rft.issue=4&rft.spage=389&rft.epage=395&rft.pages=389-395&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/S1359-6462(99)00358-9&rft_dat=%3Cproquest_osti_%3E27781979%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27781979&rft_id=info:pmid/&rft_els_id=S1359646299003589&rfr_iscdi=true