Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads

Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor−Ru(bipyridine)3−acceptor complexes (D−C2+−A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (−CH2−) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 1999-02, Vol.121 (5), p.1076-1087
Hauptverfasser: Klumpp, Thomas, Linsenmann, Markus, Larson, Steven L, Limoges, Bradford R, Bürssner, Dieter, Krissinel, Evgenii B, Elliott, C. Michael, Steiner, Ulrich E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue 5
container_start_page 1076
container_title Journal of the American Chemical Society
container_volume 121
creator Klumpp, Thomas
Linsenmann, Markus
Larson, Steven L
Limoges, Bradford R
Bürssner, Dieter
Krissinel, Evgenii B
Elliott, C. Michael
Steiner, Ulrich E
description Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor−Ru(bipyridine)3−acceptor complexes (D−C2+−A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (−CH2−) p (p = 1, 4, 5, 7) chain, and the electron acceptor is an N,N‘-diquaternary-2,2‘-bipyridinium moiety, linked to a bipyridine by a (−CH2−)2· chain. On the nanosecond time scale the first detectable photoinduced electron-transfer product after exciting the complex C2+ is the charge-separated (CS) state, D+−C2+−A+, where an electron of the phenothiazine moiety, D, has been transferred to the diquat moiety, A2+. In zero field the lifetime of the CS state is about 150 ns. At low fields (B 0 < 0.5 T) the magnetic field strongly affects the decay kinetics, splitting it up into a major component, the rate constant of which decreases by a factor of about 10 at fields of several 100 mT, and a minor component with an approximately field independent rate constant. At high fields (B 0 > 0.5 T) the total amplitude of the CS absorption signal decreases and the relative contribution of the fast decaying component increases. The magnetic field effects can be consistently interpreted and quantitatively modeled by taking into account the mechanisms and kinetics of the spin multiplicity changes in the CS state and its precursor, a short-lived CT state (D−C3+−A+) formed upon primary electron transfer from the triplet excited complex to the diquat moiety. Exploiting the magnetic field dependent kinetics, the rate constants of the triplet−singlet transitions in the two types of linked radical pairs and of all the electron-transfer processes following the primary one can be assessed. Magnetic-field-dependent investigations thus can be essential for the understanding of the complex kinetics in supramolecular systems with sequential cyclic electron transfer.
doi_str_mv 10.1021/ja983373x
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20014079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a336618356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-de8fe77776352134e38a0ba219ae433abf04dde688e61fa3ea8cf97cae74c0763</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtaPg_9gQQR7WM3H7mZ71KXVgmC19eIlTLOzNHWblGQX7MH_bqTiybmEIc-8MEPIBaM3jHJ2u4ZRKYQUnwdkwHJO05zx4pAMKKU8lWUhjslJCOvYZrxkA_I13xqbVCvcGA1tUjnbedcmrklmK9c5Y-teY52MW9Txw6YLDzY06JOZdxpDwJDE-de-W6E1_eZ6Oh1GY8LSbHfe1MZieg8hJsz7rYeNizl9Cz6JBupwRo4aaAOe_76n5G0yXlSP6dPzw7S6e0oh41mX1lg2KGMVIudMZChKoEvgbASYCQHLhmZ1jUVZYsEaEAilbkZSA8pM0zh1Si73uS50RgVtOtQr7ayNWylOKcuoHEU13CvtXQgeG7X1ZgN-pxhVP9dVf9eNNt1bEzr8_IPgP1QhhczVYjZXr-_5ZDaXLyqP_mrvQQe1dr23cd9_cr8BztOKVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads</title><source>ACS Publications</source><creator>Klumpp, Thomas ; Linsenmann, Markus ; Larson, Steven L ; Limoges, Bradford R ; Bürssner, Dieter ; Krissinel, Evgenii B ; Elliott, C. Michael ; Steiner, Ulrich E</creator><creatorcontrib>Klumpp, Thomas ; Linsenmann, Markus ; Larson, Steven L ; Limoges, Bradford R ; Bürssner, Dieter ; Krissinel, Evgenii B ; Elliott, C. Michael ; Steiner, Ulrich E ; Univ. Konstanz (DE)</creatorcontrib><description>Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor−Ru(bipyridine)3−acceptor complexes (D−C2+−A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (−CH2−) p (p = 1, 4, 5, 7) chain, and the electron acceptor is an N,N‘-diquaternary-2,2‘-bipyridinium moiety, linked to a bipyridine by a (−CH2−)2· chain. On the nanosecond time scale the first detectable photoinduced electron-transfer product after exciting the complex C2+ is the charge-separated (CS) state, D+−C2+−A+, where an electron of the phenothiazine moiety, D, has been transferred to the diquat moiety, A2+. In zero field the lifetime of the CS state is about 150 ns. At low fields (B 0 &lt; 0.5 T) the magnetic field strongly affects the decay kinetics, splitting it up into a major component, the rate constant of which decreases by a factor of about 10 at fields of several 100 mT, and a minor component with an approximately field independent rate constant. At high fields (B 0 &gt; 0.5 T) the total amplitude of the CS absorption signal decreases and the relative contribution of the fast decaying component increases. The magnetic field effects can be consistently interpreted and quantitatively modeled by taking into account the mechanisms and kinetics of the spin multiplicity changes in the CS state and its precursor, a short-lived CT state (D−C3+−A+) formed upon primary electron transfer from the triplet excited complex to the diquat moiety. Exploiting the magnetic field dependent kinetics, the rate constants of the triplet−singlet transitions in the two types of linked radical pairs and of all the electron-transfer processes following the primary one can be assessed. Magnetic-field-dependent investigations thus can be essential for the understanding of the complex kinetics in supramolecular systems with sequential cyclic electron transfer.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja983373x</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>40 CHEMISTRY ; BINDING ENERGY ; ELECTRON TRANSFER ; ELECTRONS ; PHOTOCHEMISTRY ; PYRIDINES ; RUTHENIUM COMPOUNDS ; VALENCE</subject><ispartof>Journal of the American Chemical Society, 1999-02, Vol.121 (5), p.1076-1087</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-de8fe77776352134e38a0ba219ae433abf04dde688e61fa3ea8cf97cae74c0763</citedby><cites>FETCH-LOGICAL-a424t-de8fe77776352134e38a0ba219ae433abf04dde688e61fa3ea8cf97cae74c0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja983373x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja983373x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20014079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klumpp, Thomas</creatorcontrib><creatorcontrib>Linsenmann, Markus</creatorcontrib><creatorcontrib>Larson, Steven L</creatorcontrib><creatorcontrib>Limoges, Bradford R</creatorcontrib><creatorcontrib>Bürssner, Dieter</creatorcontrib><creatorcontrib>Krissinel, Evgenii B</creatorcontrib><creatorcontrib>Elliott, C. Michael</creatorcontrib><creatorcontrib>Steiner, Ulrich E</creatorcontrib><creatorcontrib>Univ. Konstanz (DE)</creatorcontrib><title>Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor−Ru(bipyridine)3−acceptor complexes (D−C2+−A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (−CH2−) p (p = 1, 4, 5, 7) chain, and the electron acceptor is an N,N‘-diquaternary-2,2‘-bipyridinium moiety, linked to a bipyridine by a (−CH2−)2· chain. On the nanosecond time scale the first detectable photoinduced electron-transfer product after exciting the complex C2+ is the charge-separated (CS) state, D+−C2+−A+, where an electron of the phenothiazine moiety, D, has been transferred to the diquat moiety, A2+. In zero field the lifetime of the CS state is about 150 ns. At low fields (B 0 &lt; 0.5 T) the magnetic field strongly affects the decay kinetics, splitting it up into a major component, the rate constant of which decreases by a factor of about 10 at fields of several 100 mT, and a minor component with an approximately field independent rate constant. At high fields (B 0 &gt; 0.5 T) the total amplitude of the CS absorption signal decreases and the relative contribution of the fast decaying component increases. The magnetic field effects can be consistently interpreted and quantitatively modeled by taking into account the mechanisms and kinetics of the spin multiplicity changes in the CS state and its precursor, a short-lived CT state (D−C3+−A+) formed upon primary electron transfer from the triplet excited complex to the diquat moiety. Exploiting the magnetic field dependent kinetics, the rate constants of the triplet−singlet transitions in the two types of linked radical pairs and of all the electron-transfer processes following the primary one can be assessed. Magnetic-field-dependent investigations thus can be essential for the understanding of the complex kinetics in supramolecular systems with sequential cyclic electron transfer.</description><subject>40 CHEMISTRY</subject><subject>BINDING ENERGY</subject><subject>ELECTRON TRANSFER</subject><subject>ELECTRONS</subject><subject>PHOTOCHEMISTRY</subject><subject>PYRIDINES</subject><subject>RUTHENIUM COMPOUNDS</subject><subject>VALENCE</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtaPg_9gQQR7WM3H7mZ71KXVgmC19eIlTLOzNHWblGQX7MH_bqTiybmEIc-8MEPIBaM3jHJ2u4ZRKYQUnwdkwHJO05zx4pAMKKU8lWUhjslJCOvYZrxkA_I13xqbVCvcGA1tUjnbedcmrklmK9c5Y-teY52MW9Txw6YLDzY06JOZdxpDwJDE-de-W6E1_eZ6Oh1GY8LSbHfe1MZieg8hJsz7rYeNizl9Cz6JBupwRo4aaAOe_76n5G0yXlSP6dPzw7S6e0oh41mX1lg2KGMVIudMZChKoEvgbASYCQHLhmZ1jUVZYsEaEAilbkZSA8pM0zh1Si73uS50RgVtOtQr7ayNWylOKcuoHEU13CvtXQgeG7X1ZgN-pxhVP9dVf9eNNt1bEzr8_IPgP1QhhczVYjZXr-_5ZDaXLyqP_mrvQQe1dr23cd9_cr8BztOKVQ</recordid><startdate>19990210</startdate><enddate>19990210</enddate><creator>Klumpp, Thomas</creator><creator>Linsenmann, Markus</creator><creator>Larson, Steven L</creator><creator>Limoges, Bradford R</creator><creator>Bürssner, Dieter</creator><creator>Krissinel, Evgenii B</creator><creator>Elliott, C. Michael</creator><creator>Steiner, Ulrich E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19990210</creationdate><title>Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads</title><author>Klumpp, Thomas ; Linsenmann, Markus ; Larson, Steven L ; Limoges, Bradford R ; Bürssner, Dieter ; Krissinel, Evgenii B ; Elliott, C. Michael ; Steiner, Ulrich E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-de8fe77776352134e38a0ba219ae433abf04dde688e61fa3ea8cf97cae74c0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>40 CHEMISTRY</topic><topic>BINDING ENERGY</topic><topic>ELECTRON TRANSFER</topic><topic>ELECTRONS</topic><topic>PHOTOCHEMISTRY</topic><topic>PYRIDINES</topic><topic>RUTHENIUM COMPOUNDS</topic><topic>VALENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klumpp, Thomas</creatorcontrib><creatorcontrib>Linsenmann, Markus</creatorcontrib><creatorcontrib>Larson, Steven L</creatorcontrib><creatorcontrib>Limoges, Bradford R</creatorcontrib><creatorcontrib>Bürssner, Dieter</creatorcontrib><creatorcontrib>Krissinel, Evgenii B</creatorcontrib><creatorcontrib>Elliott, C. Michael</creatorcontrib><creatorcontrib>Steiner, Ulrich E</creatorcontrib><creatorcontrib>Univ. Konstanz (DE)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klumpp, Thomas</au><au>Linsenmann, Markus</au><au>Larson, Steven L</au><au>Limoges, Bradford R</au><au>Bürssner, Dieter</au><au>Krissinel, Evgenii B</au><au>Elliott, C. Michael</au><au>Steiner, Ulrich E</au><aucorp>Univ. Konstanz (DE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1999-02-10</date><risdate>1999</risdate><volume>121</volume><issue>5</issue><spage>1076</spage><epage>1087</epage><pages>1076-1087</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor−Ru(bipyridine)3−acceptor complexes (D−C2+−A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (−CH2−) p (p = 1, 4, 5, 7) chain, and the electron acceptor is an N,N‘-diquaternary-2,2‘-bipyridinium moiety, linked to a bipyridine by a (−CH2−)2· chain. On the nanosecond time scale the first detectable photoinduced electron-transfer product after exciting the complex C2+ is the charge-separated (CS) state, D+−C2+−A+, where an electron of the phenothiazine moiety, D, has been transferred to the diquat moiety, A2+. In zero field the lifetime of the CS state is about 150 ns. At low fields (B 0 &lt; 0.5 T) the magnetic field strongly affects the decay kinetics, splitting it up into a major component, the rate constant of which decreases by a factor of about 10 at fields of several 100 mT, and a minor component with an approximately field independent rate constant. At high fields (B 0 &gt; 0.5 T) the total amplitude of the CS absorption signal decreases and the relative contribution of the fast decaying component increases. The magnetic field effects can be consistently interpreted and quantitatively modeled by taking into account the mechanisms and kinetics of the spin multiplicity changes in the CS state and its precursor, a short-lived CT state (D−C3+−A+) formed upon primary electron transfer from the triplet excited complex to the diquat moiety. Exploiting the magnetic field dependent kinetics, the rate constants of the triplet−singlet transitions in the two types of linked radical pairs and of all the electron-transfer processes following the primary one can be assessed. Magnetic-field-dependent investigations thus can be essential for the understanding of the complex kinetics in supramolecular systems with sequential cyclic electron transfer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/ja983373x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 1999-02, Vol.121 (5), p.1076-1087
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_20014079
source ACS Publications
subjects 40 CHEMISTRY
BINDING ENERGY
ELECTRON TRANSFER
ELECTRONS
PHOTOCHEMISTRY
PYRIDINES
RUTHENIUM COMPOUNDS
VALENCE
title Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Chemical%20Control%20of%20Photoinduced%20Electron-Transfer%20Processes%20in%20Ruthenium(II)-Trisbipyridine-Based%20Supramolecular%20Triads&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Klumpp,%20Thomas&rft.aucorp=Univ.%20Konstanz%20(DE)&rft.date=1999-02-10&rft.volume=121&rft.issue=5&rft.spage=1076&rft.epage=1087&rft.pages=1076-1087&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja983373x&rft_dat=%3Cacs_osti_%3Ea336618356%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true