Virus‐Based Pyroelectricity

The first observation of heat‐induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-11, Vol.35 (46), p.e2305503-n/a
Hauptverfasser: Kim, Han, Okada, Kento, Chae, Inseok, Lim, Butaek, Ji, Seungwook, Kwon, Yoonji, Lee, Seung‐Wuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page e2305503
container_title Advanced materials (Weinheim)
container_volume 35
creator Kim, Han
Okada, Kento
Chae, Inseok
Lim, Butaek
Ji, Seungwook
Kwon, Yoonji
Lee, Seung‐Wuk
description The first observation of heat‐induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α‐helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template‐assisted self‐assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure‐dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m−2 °C−1. Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α‐helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage‐based approach not only provides valuable insights into bio‐pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials. The first observation of heat‐induced electrical potential generation and detection of a virus is demonstrated. Bio‐pyroelectricity is manifested by the unfolding of α‐helical protein structure and can be tuned by genetic engineering. This biopyroelectrics introduce novel opportunities to detect various viral particles and facilitate the development of novel biomaterials for future applications in biosensors and bioelectric materials.
doi_str_mv 10.1002/adma.202305503
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2001330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867153395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3773-e2931688db91b265bc1815332021401356f6f4c49bf1bf45825cf2521f0cb4c33</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwsiEhWFhSjq-xx1KuEggGYLUS1xau0qTYiVA2HoFn5ElwFQQSC9NZvv9yfoT2MUwwADkt5stiQoBQ4BzoBhphTnDGQPFNNAJFeaYEk9toJ8YFACgBYoQOnn3o4uf7x1kR7fzwoQ-Nraxpgze-7XfRliuqaPe-7xg9XV48zq6z2_urm9n0NjM0z2lmiaJYSDkvFS6J4KXBEnNKUxnMAFMunHDMMFU6XDrGJeHGkdTOgSmZoXSMjgbfJrZexxRtzYtp6jo10QSSBYUEnQzQKjSvnY2tXvpobFUVtW26qIkU-TpV8YQe_0EXTRfq9EKiVJpI5slzjCYDZUITY7BOr4JfFqHXGPR6Ur2eVP9MmgRqELz5yvb_0Hp6fjf91X4BECR3IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890238701</pqid></control><display><type>article</type><title>Virus‐Based Pyroelectricity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Han ; Okada, Kento ; Chae, Inseok ; Lim, Butaek ; Ji, Seungwook ; Kwon, Yoonji ; Lee, Seung‐Wuk</creator><creatorcontrib>Kim, Han ; Okada, Kento ; Chae, Inseok ; Lim, Butaek ; Ji, Seungwook ; Kwon, Yoonji ; Lee, Seung‐Wuk</creatorcontrib><description>The first observation of heat‐induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α‐helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template‐assisted self‐assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure‐dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m−2 °C−1. Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α‐helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage‐based approach not only provides valuable insights into bio‐pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials. The first observation of heat‐induced electrical potential generation and detection of a virus is demonstrated. Bio‐pyroelectricity is manifested by the unfolding of α‐helical protein structure and can be tuned by genetic engineering. This biopyroelectrics introduce novel opportunities to detect various viral particles and facilitate the development of novel biomaterials for future applications in biosensors and bioelectric materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305503</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bioelectricity ; Biomedical materials ; bionanotechnology ; Biosensors ; Dichroism ; Dipoles ; Genetic engineering ; Genetic modification ; Helices ; Phages ; Polarization ; Proteins ; Pyroelectricity ; Self-assembly ; Viruses</subject><ispartof>Advanced materials (Weinheim), 2023-11, Vol.35 (46), p.e2305503-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3773-e2931688db91b265bc1815332021401356f6f4c49bf1bf45825cf2521f0cb4c33</citedby><cites>FETCH-LOGICAL-c3773-e2931688db91b265bc1815332021401356f6f4c49bf1bf45825cf2521f0cb4c33</cites><orcidid>0000-0002-0501-8432 ; 0000000205018432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2001330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Han</creatorcontrib><creatorcontrib>Okada, Kento</creatorcontrib><creatorcontrib>Chae, Inseok</creatorcontrib><creatorcontrib>Lim, Butaek</creatorcontrib><creatorcontrib>Ji, Seungwook</creatorcontrib><creatorcontrib>Kwon, Yoonji</creatorcontrib><creatorcontrib>Lee, Seung‐Wuk</creatorcontrib><title>Virus‐Based Pyroelectricity</title><title>Advanced materials (Weinheim)</title><description>The first observation of heat‐induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α‐helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template‐assisted self‐assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure‐dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m−2 °C−1. Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α‐helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage‐based approach not only provides valuable insights into bio‐pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials. The first observation of heat‐induced electrical potential generation and detection of a virus is demonstrated. Bio‐pyroelectricity is manifested by the unfolding of α‐helical protein structure and can be tuned by genetic engineering. This biopyroelectrics introduce novel opportunities to detect various viral particles and facilitate the development of novel biomaterials for future applications in biosensors and bioelectric materials.</description><subject>Bioelectricity</subject><subject>Biomedical materials</subject><subject>bionanotechnology</subject><subject>Biosensors</subject><subject>Dichroism</subject><subject>Dipoles</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Helices</subject><subject>Phages</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Pyroelectricity</subject><subject>Self-assembly</subject><subject>Viruses</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwsiEhWFhSjq-xx1KuEggGYLUS1xau0qTYiVA2HoFn5ElwFQQSC9NZvv9yfoT2MUwwADkt5stiQoBQ4BzoBhphTnDGQPFNNAJFeaYEk9toJ8YFACgBYoQOnn3o4uf7x1kR7fzwoQ-Nraxpgze-7XfRliuqaPe-7xg9XV48zq6z2_urm9n0NjM0z2lmiaJYSDkvFS6J4KXBEnNKUxnMAFMunHDMMFU6XDrGJeHGkdTOgSmZoXSMjgbfJrZexxRtzYtp6jo10QSSBYUEnQzQKjSvnY2tXvpobFUVtW26qIkU-TpV8YQe_0EXTRfq9EKiVJpI5slzjCYDZUITY7BOr4JfFqHXGPR6Ur2eVP9MmgRqELz5yvb_0Hp6fjf91X4BECR3IQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kim, Han</creator><creator>Okada, Kento</creator><creator>Chae, Inseok</creator><creator>Lim, Butaek</creator><creator>Ji, Seungwook</creator><creator>Kwon, Yoonji</creator><creator>Lee, Seung‐Wuk</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0501-8432</orcidid><orcidid>https://orcid.org/0000000205018432</orcidid></search><sort><creationdate>20231101</creationdate><title>Virus‐Based Pyroelectricity</title><author>Kim, Han ; Okada, Kento ; Chae, Inseok ; Lim, Butaek ; Ji, Seungwook ; Kwon, Yoonji ; Lee, Seung‐Wuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3773-e2931688db91b265bc1815332021401356f6f4c49bf1bf45825cf2521f0cb4c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioelectricity</topic><topic>Biomedical materials</topic><topic>bionanotechnology</topic><topic>Biosensors</topic><topic>Dichroism</topic><topic>Dipoles</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Helices</topic><topic>Phages</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Pyroelectricity</topic><topic>Self-assembly</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Han</creatorcontrib><creatorcontrib>Okada, Kento</creatorcontrib><creatorcontrib>Chae, Inseok</creatorcontrib><creatorcontrib>Lim, Butaek</creatorcontrib><creatorcontrib>Ji, Seungwook</creatorcontrib><creatorcontrib>Kwon, Yoonji</creatorcontrib><creatorcontrib>Lee, Seung‐Wuk</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Han</au><au>Okada, Kento</au><au>Chae, Inseok</au><au>Lim, Butaek</au><au>Ji, Seungwook</au><au>Kwon, Yoonji</au><au>Lee, Seung‐Wuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virus‐Based Pyroelectricity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>46</issue><spage>e2305503</spage><epage>n/a</epage><pages>e2305503-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The first observation of heat‐induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α‐helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template‐assisted self‐assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure‐dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m−2 °C−1. Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α‐helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage‐based approach not only provides valuable insights into bio‐pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials. The first observation of heat‐induced electrical potential generation and detection of a virus is demonstrated. Bio‐pyroelectricity is manifested by the unfolding of α‐helical protein structure and can be tuned by genetic engineering. This biopyroelectrics introduce novel opportunities to detect various viral particles and facilitate the development of novel biomaterials for future applications in biosensors and bioelectric materials.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202305503</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0501-8432</orcidid><orcidid>https://orcid.org/0000000205018432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-11, Vol.35 (46), p.e2305503-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_2001330
source Wiley Online Library Journals Frontfile Complete
subjects Bioelectricity
Biomedical materials
bionanotechnology
Biosensors
Dichroism
Dipoles
Genetic engineering
Genetic modification
Helices
Phages
Polarization
Proteins
Pyroelectricity
Self-assembly
Viruses
title Virus‐Based Pyroelectricity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virus%E2%80%90Based%20Pyroelectricity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Han&rft.date=2023-11-01&rft.volume=35&rft.issue=46&rft.spage=e2305503&rft.epage=n/a&rft.pages=e2305503-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305503&rft_dat=%3Cproquest_osti_%3E2867153395%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890238701&rft_id=info:pmid/&rfr_iscdi=true