Three-dimensional feedback processes in current-driven metal

Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback loop: j both reacts to and alters the electrical conductivity σ, through Joule heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-06, Vol.107 (6)
Hauptverfasser: Yu, Edmund P., Awe, Thomas James, Cochrane, Kyle R., Peterson, Kyle John, Yates, Kevin Colligan, Hutchinson, Trevor M., Hatch, Maren Whiting, Bauer, Bruno S., Tomlinson, Kurt, Sinars, Daniel B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback loop: j both reacts to and alters the electrical conductivity σ, through Joule heating and hydrodynamic expansion, so that j and σ are constantly in flux. Thus, the pit transforms into larger striation and filament structures predicted by the electrothermal instability theory. Both structures are important in applications of current-driven metal: Here, the striation constitutes a density perturbation that can seed the magneto-Rayleigh-Taylor instability, while the filament provides a more rapid path to plasma formation, through 3D j redistribution. Simulations predict distinctive self-emission patterns, thus allowing for experimental observation and comparison.
ISSN:2470-0045
2470-0053