Revealing 3D intragranular micromechanical fields at triple junctions
Triple junctions, intersections of three or more grains in polycrystalline solids, are known locations of potential stress concentration and strain localization. In this work, intragranular lattice curvatures and elastic strains are measured at triple junctions via a novel zoom-in style combination...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2023-11, Vol.260 (C), p.119300, Article 119300 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 119300 |
container_title | Acta materialia |
container_volume | 260 |
creator | Gustafson, Sven E. Ludwig, Wolfgang Rodriguez-Lamas, Raquel Yildirim, Can Shanks, Katherine S. Detlefs, Carsten Sangid, Michael D. |
description | Triple junctions, intersections of three or more grains in polycrystalline solids, are known locations of potential stress concentration and strain localization. In this work, intragranular lattice curvatures and elastic strains are measured at triple junctions via a novel zoom-in style combination of synchrotron X-ray techniques. Additionally, this work revisits the impact of including elastic strain gradients while calculating the dislocation density within embedded grains via the Nye dislocation tensor. Without elastic strain gradients, the dislocation density is underestimated at a hotspot by 27% of the maximum dislocation density value. Spatial regions near triple junctions are found to contain both the highest values of the intragranular misorientations metrics and generally higher values than grain boundaries (between two grains). A heterogenous distribution of intragranular misorientation, elastic strain, and dislocation density is measured within a grain along a single triple junction line, and the triple junction line end points (quad points) exhibit substantially different micromechanical fields. This work provides a unique 3D view of triple junctions within individual grains and highlights their spatially heterogenous intragranular micromechanical response along triple junction lines, especially when compared to relatively less complex behavior along grain boundaries. While a grain averaged example is provided of intergranular strain across grains, several examples of intragranular strain were visualized near a triple junction. The combined analysis of intragranular lattice curvature (associated with strain metrics) and elastic strain (associated with stress) provides a more complete characterization of the 3D sub-grain fields than previously reported.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2023.119300 |
format | Article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2000596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645423006304</els_id><sourcerecordid>oai_HAL_hal_04305077v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-50bf917b5352fe5d1a596ada0611274d0b6308eb61244c72f74fcf6ae70459213</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWKsfQQjePKTO_ss2Jym1WqEgiJ6X6WbTbkg2ZXdb8NubkOLV0wzDe4_fvCS5JzAjQPKneoY6YotxRoGyGSEFA7hIJmQuWUa5YJf9zkSR5Vzw6-QmhBqAUMlhkqw-zclgY90uZS-pddHjzqM7NujT1mrftUbv0VmNTVpZ05QhxZhGbw-NSeuj09F2LtwmVxU2wdyd5zT5fl19LdfZ5uPtfbnYZJoTGTMB26ogciuYoJURJUFR5Fgi5GTAKWGbM5ibbU4o51rSSvJKVzkaCVwUlLBp8jDmdiFaFbSNPZ3unDM6KgoAfV4vehxFe2zUwdsW_Y_q0Kr1YqOGG3AGAqQ8DYFi1PafhuBN9WcgoIZyVa3O5aqhXDWW2_ueR5_pvz1Z4wcY47QprR9Yys7-k_ALcJ-Dkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revealing 3D intragranular micromechanical fields at triple junctions</title><source>Elsevier ScienceDirect Journals</source><creator>Gustafson, Sven E. ; Ludwig, Wolfgang ; Rodriguez-Lamas, Raquel ; Yildirim, Can ; Shanks, Katherine S. ; Detlefs, Carsten ; Sangid, Michael D.</creator><creatorcontrib>Gustafson, Sven E. ; Ludwig, Wolfgang ; Rodriguez-Lamas, Raquel ; Yildirim, Can ; Shanks, Katherine S. ; Detlefs, Carsten ; Sangid, Michael D.</creatorcontrib><description>Triple junctions, intersections of three or more grains in polycrystalline solids, are known locations of potential stress concentration and strain localization. In this work, intragranular lattice curvatures and elastic strains are measured at triple junctions via a novel zoom-in style combination of synchrotron X-ray techniques. Additionally, this work revisits the impact of including elastic strain gradients while calculating the dislocation density within embedded grains via the Nye dislocation tensor. Without elastic strain gradients, the dislocation density is underestimated at a hotspot by 27% of the maximum dislocation density value. Spatial regions near triple junctions are found to contain both the highest values of the intragranular misorientations metrics and generally higher values than grain boundaries (between two grains). A heterogenous distribution of intragranular misorientation, elastic strain, and dislocation density is measured within a grain along a single triple junction line, and the triple junction line end points (quad points) exhibit substantially different micromechanical fields. This work provides a unique 3D view of triple junctions within individual grains and highlights their spatially heterogenous intragranular micromechanical response along triple junction lines, especially when compared to relatively less complex behavior along grain boundaries. While a grain averaged example is provided of intergranular strain across grains, several examples of intragranular strain were visualized near a triple junction. The combined analysis of intragranular lattice curvature (associated with strain metrics) and elastic strain (associated with stress) provides a more complete characterization of the 3D sub-grain fields than previously reported.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2023.119300</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Dislocation density ; Engineering Sciences ; Heterogeneity ; High energy X-ray diffraction ; Intragranular misorientation ; Mechanics ; Mechanics of materials ; Strain gradients</subject><ispartof>Acta materialia, 2023-11, Vol.260 (C), p.119300, Article 119300</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-50bf917b5352fe5d1a596ada0611274d0b6308eb61244c72f74fcf6ae70459213</citedby><cites>FETCH-LOGICAL-c417t-50bf917b5352fe5d1a596ada0611274d0b6308eb61244c72f74fcf6ae70459213</cites><orcidid>0000-0002-0137-8174 ; 0000-0002-3256-3831 ; 0000-0003-3031-4169 ; 0000-0002-4969-0685 ; 0000-0003-2573-2286 ; 0000-0002-1986-8673 ; 0000000325732286 ; 0000000219868673 ; 0000000330314169 ; 0000000232563831 ; 0000000201378174 ; 0000000249690685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645423006304$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04305077$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2000596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafson, Sven E.</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Rodriguez-Lamas, Raquel</creatorcontrib><creatorcontrib>Yildirim, Can</creatorcontrib><creatorcontrib>Shanks, Katherine S.</creatorcontrib><creatorcontrib>Detlefs, Carsten</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><title>Revealing 3D intragranular micromechanical fields at triple junctions</title><title>Acta materialia</title><description>Triple junctions, intersections of three or more grains in polycrystalline solids, are known locations of potential stress concentration and strain localization. In this work, intragranular lattice curvatures and elastic strains are measured at triple junctions via a novel zoom-in style combination of synchrotron X-ray techniques. Additionally, this work revisits the impact of including elastic strain gradients while calculating the dislocation density within embedded grains via the Nye dislocation tensor. Without elastic strain gradients, the dislocation density is underestimated at a hotspot by 27% of the maximum dislocation density value. Spatial regions near triple junctions are found to contain both the highest values of the intragranular misorientations metrics and generally higher values than grain boundaries (between two grains). A heterogenous distribution of intragranular misorientation, elastic strain, and dislocation density is measured within a grain along a single triple junction line, and the triple junction line end points (quad points) exhibit substantially different micromechanical fields. This work provides a unique 3D view of triple junctions within individual grains and highlights their spatially heterogenous intragranular micromechanical response along triple junction lines, especially when compared to relatively less complex behavior along grain boundaries. While a grain averaged example is provided of intergranular strain across grains, several examples of intragranular strain were visualized near a triple junction. The combined analysis of intragranular lattice curvature (associated with strain metrics) and elastic strain (associated with stress) provides a more complete characterization of the 3D sub-grain fields than previously reported.
[Display omitted]</description><subject>Dislocation density</subject><subject>Engineering Sciences</subject><subject>Heterogeneity</subject><subject>High energy X-ray diffraction</subject><subject>Intragranular misorientation</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Strain gradients</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxYMoWKsfQQjePKTO_ss2Jym1WqEgiJ6X6WbTbkg2ZXdb8NubkOLV0wzDe4_fvCS5JzAjQPKneoY6YotxRoGyGSEFA7hIJmQuWUa5YJf9zkSR5Vzw6-QmhBqAUMlhkqw-zclgY90uZS-pddHjzqM7NujT1mrftUbv0VmNTVpZ05QhxZhGbw-NSeuj09F2LtwmVxU2wdyd5zT5fl19LdfZ5uPtfbnYZJoTGTMB26ogciuYoJURJUFR5Fgi5GTAKWGbM5ibbU4o51rSSvJKVzkaCVwUlLBp8jDmdiFaFbSNPZ3unDM6KgoAfV4vehxFe2zUwdsW_Y_q0Kr1YqOGG3AGAqQ8DYFi1PafhuBN9WcgoIZyVa3O5aqhXDWW2_ueR5_pvz1Z4wcY47QprR9Yys7-k_ALcJ-Dkw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Gustafson, Sven E.</creator><creator>Ludwig, Wolfgang</creator><creator>Rodriguez-Lamas, Raquel</creator><creator>Yildirim, Can</creator><creator>Shanks, Katherine S.</creator><creator>Detlefs, Carsten</creator><creator>Sangid, Michael D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0137-8174</orcidid><orcidid>https://orcid.org/0000-0002-3256-3831</orcidid><orcidid>https://orcid.org/0000-0003-3031-4169</orcidid><orcidid>https://orcid.org/0000-0002-4969-0685</orcidid><orcidid>https://orcid.org/0000-0003-2573-2286</orcidid><orcidid>https://orcid.org/0000-0002-1986-8673</orcidid><orcidid>https://orcid.org/0000000325732286</orcidid><orcidid>https://orcid.org/0000000219868673</orcidid><orcidid>https://orcid.org/0000000330314169</orcidid><orcidid>https://orcid.org/0000000232563831</orcidid><orcidid>https://orcid.org/0000000201378174</orcidid><orcidid>https://orcid.org/0000000249690685</orcidid></search><sort><creationdate>20231101</creationdate><title>Revealing 3D intragranular micromechanical fields at triple junctions</title><author>Gustafson, Sven E. ; Ludwig, Wolfgang ; Rodriguez-Lamas, Raquel ; Yildirim, Can ; Shanks, Katherine S. ; Detlefs, Carsten ; Sangid, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-50bf917b5352fe5d1a596ada0611274d0b6308eb61244c72f74fcf6ae70459213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dislocation density</topic><topic>Engineering Sciences</topic><topic>Heterogeneity</topic><topic>High energy X-ray diffraction</topic><topic>Intragranular misorientation</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Strain gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafson, Sven E.</creatorcontrib><creatorcontrib>Ludwig, Wolfgang</creatorcontrib><creatorcontrib>Rodriguez-Lamas, Raquel</creatorcontrib><creatorcontrib>Yildirim, Can</creatorcontrib><creatorcontrib>Shanks, Katherine S.</creatorcontrib><creatorcontrib>Detlefs, Carsten</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustafson, Sven E.</au><au>Ludwig, Wolfgang</au><au>Rodriguez-Lamas, Raquel</au><au>Yildirim, Can</au><au>Shanks, Katherine S.</au><au>Detlefs, Carsten</au><au>Sangid, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing 3D intragranular micromechanical fields at triple junctions</atitle><jtitle>Acta materialia</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>260</volume><issue>C</issue><spage>119300</spage><pages>119300-</pages><artnum>119300</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Triple junctions, intersections of three or more grains in polycrystalline solids, are known locations of potential stress concentration and strain localization. In this work, intragranular lattice curvatures and elastic strains are measured at triple junctions via a novel zoom-in style combination of synchrotron X-ray techniques. Additionally, this work revisits the impact of including elastic strain gradients while calculating the dislocation density within embedded grains via the Nye dislocation tensor. Without elastic strain gradients, the dislocation density is underestimated at a hotspot by 27% of the maximum dislocation density value. Spatial regions near triple junctions are found to contain both the highest values of the intragranular misorientations metrics and generally higher values than grain boundaries (between two grains). A heterogenous distribution of intragranular misorientation, elastic strain, and dislocation density is measured within a grain along a single triple junction line, and the triple junction line end points (quad points) exhibit substantially different micromechanical fields. This work provides a unique 3D view of triple junctions within individual grains and highlights their spatially heterogenous intragranular micromechanical response along triple junction lines, especially when compared to relatively less complex behavior along grain boundaries. While a grain averaged example is provided of intergranular strain across grains, several examples of intragranular strain were visualized near a triple junction. The combined analysis of intragranular lattice curvature (associated with strain metrics) and elastic strain (associated with stress) provides a more complete characterization of the 3D sub-grain fields than previously reported.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2023.119300</doi><orcidid>https://orcid.org/0000-0002-0137-8174</orcidid><orcidid>https://orcid.org/0000-0002-3256-3831</orcidid><orcidid>https://orcid.org/0000-0003-3031-4169</orcidid><orcidid>https://orcid.org/0000-0002-4969-0685</orcidid><orcidid>https://orcid.org/0000-0003-2573-2286</orcidid><orcidid>https://orcid.org/0000-0002-1986-8673</orcidid><orcidid>https://orcid.org/0000000325732286</orcidid><orcidid>https://orcid.org/0000000219868673</orcidid><orcidid>https://orcid.org/0000000330314169</orcidid><orcidid>https://orcid.org/0000000232563831</orcidid><orcidid>https://orcid.org/0000000201378174</orcidid><orcidid>https://orcid.org/0000000249690685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2023-11, Vol.260 (C), p.119300, Article 119300 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_2000596 |
source | Elsevier ScienceDirect Journals |
subjects | Dislocation density Engineering Sciences Heterogeneity High energy X-ray diffraction Intragranular misorientation Mechanics Mechanics of materials Strain gradients |
title | Revealing 3D intragranular micromechanical fields at triple junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%203D%20intragranular%20micromechanical%20fields%20at%20triple%20junctions&rft.jtitle=Acta%20materialia&rft.au=Gustafson,%20Sven%20E.&rft.date=2023-11-01&rft.volume=260&rft.issue=C&rft.spage=119300&rft.pages=119300-&rft.artnum=119300&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2023.119300&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_04305077v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645423006304&rfr_iscdi=true |