Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives
Bench-scale studies demonstrated the efficacy of hydrothermal oxidation for the treatment of wastes derived from the alkaline hydrolysis of the high explosive PBX 9404 (94% HMX, 3% nitrocellulose, and 3% chloroethyl phosphate). Specifically, chemical kinetics studies were used to deduce major global...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1999-12, Vol.38 (12), p.4585-4593 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4593 |
---|---|
container_issue | 12 |
container_start_page | 4585 |
container_title | Industrial & engineering chemistry research |
container_volume | 38 |
creator | Dell'Orco, P Eaton, E McInroy, R Flesner, R Walker, T Muske, K |
description | Bench-scale studies demonstrated the efficacy of hydrothermal oxidation for the treatment of wastes derived from the alkaline hydrolysis of the high explosive PBX 9404 (94% HMX, 3% nitrocellulose, and 3% chloroethyl phosphate). Specifically, chemical kinetics studies were used to deduce major global reaction pathways, and to develop a kinetic model. Although the hydrolysis liquor is a complicated waste matrix, a three-parameter kinetic model captured major reaction paths. The kinetic model used total organic carbon (TOC) as a bulk parameter for dissolved organic materials, while NO x - was used to represent the oxidized nitrogen species in solution (NO2 - and NO3 -). With the use of the kinetic model, an optimal treatment strategy using two oxidation stages was derived. The first stage involved balancing NO x - and O2 redox chemistry to minimize aqueous nitrogen in the effluent, while the second stage mineralized the remaining TOC. |
doi_str_mv | 10.1021/ie9901022 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20005880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_Q4CZFJ9V_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-3551a6f16c4e4f46307942f5cbc1ae1315682d00715caa1e095d7efb94c490733</originalsourceid><addsrcrecordid>eNptkM9uEzEQhy1EJULhwBtYAg49LIx37f3DDUVpA1Q0QACJizX12sRls448LjRSDxzptY_YJ2HDonLhMJqR5pvfSB9jjwQ8E5CL5942DQxTfodNhMohUyDVXTaBuq4zVdfqHrtPdAYASkk5YZfzbRtDWtm4xo4vo8W0tn3iwfHpza_rt0OdDDXnn5GSpRc3P6_4e4sm-dDzN763yRvi2Ld8gWn1A7fEXYj8T2q3JU98EUN7bhLtIuf-64rPLjZdIP_d0gO257Aj-_Bv32cfD2fL6Tw7Pjl6NX15nGGh8pQVSgksnSiNtNLJsoCqkblT5tQItKIQqqzzFqASyiAKC41qK-tOG2lkA1VR7LPHY26g5DUZn6xZmdD31iSd71zUNQzUwUiZGIiidXoT_RrjVgvQO7n6Vu7APhnZDZLBzkXsjad_BzkUoKoBy0bMD_IubtcYv-myKiqll4sP-p2cfjl83XzSu9inI4-G9Fk4j_2g5T_vfwNampdD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives</title><source>ACS Publications</source><creator>Dell'Orco, P ; Eaton, E ; McInroy, R ; Flesner, R ; Walker, T ; Muske, K</creator><creatorcontrib>Dell'Orco, P ; Eaton, E ; McInroy, R ; Flesner, R ; Walker, T ; Muske, K ; SmithKline Beecham Pharmaceuticals, King of Prussia, PA (US)</creatorcontrib><description>Bench-scale studies demonstrated the efficacy of hydrothermal oxidation for the treatment of wastes derived from the alkaline hydrolysis of the high explosive PBX 9404 (94% HMX, 3% nitrocellulose, and 3% chloroethyl phosphate). Specifically, chemical kinetics studies were used to deduce major global reaction pathways, and to develop a kinetic model. Although the hydrolysis liquor is a complicated waste matrix, a three-parameter kinetic model captured major reaction paths. The kinetic model used total organic carbon (TOC) as a bulk parameter for dissolved organic materials, while NO x - was used to represent the oxidized nitrogen species in solution (NO2 - and NO3 -). With the use of the kinetic model, an optimal treatment strategy using two oxidation stages was derived. The first stage involved balancing NO x - and O2 redox chemistry to minimize aqueous nitrogen in the effluent, while the second stage mineralized the remaining TOC.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie9901022</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; CHEMICAL EXPLOSIVES ; CHEMICAL REACTION KINETICS ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; Exact sciences and technology ; General treatment and storage processes ; HYDROLYSIS ; MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE ; Other wastewaters ; OXIDATION ; Pollution ; WASTE PROCESSING ; Wastes ; Wastewaters ; Water treatment and pollution</subject><ispartof>Industrial & engineering chemistry research, 1999-12, Vol.38 (12), p.4585-4593</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-3551a6f16c4e4f46307942f5cbc1ae1315682d00715caa1e095d7efb94c490733</citedby><cites>FETCH-LOGICAL-a352t-3551a6f16c4e4f46307942f5cbc1ae1315682d00715caa1e095d7efb94c490733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie9901022$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie9901022$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1203057$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20005880$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dell'Orco, P</creatorcontrib><creatorcontrib>Eaton, E</creatorcontrib><creatorcontrib>McInroy, R</creatorcontrib><creatorcontrib>Flesner, R</creatorcontrib><creatorcontrib>Walker, T</creatorcontrib><creatorcontrib>Muske, K</creatorcontrib><creatorcontrib>SmithKline Beecham Pharmaceuticals, King of Prussia, PA (US)</creatorcontrib><title>Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Bench-scale studies demonstrated the efficacy of hydrothermal oxidation for the treatment of wastes derived from the alkaline hydrolysis of the high explosive PBX 9404 (94% HMX, 3% nitrocellulose, and 3% chloroethyl phosphate). Specifically, chemical kinetics studies were used to deduce major global reaction pathways, and to develop a kinetic model. Although the hydrolysis liquor is a complicated waste matrix, a three-parameter kinetic model captured major reaction paths. The kinetic model used total organic carbon (TOC) as a bulk parameter for dissolved organic materials, while NO x - was used to represent the oxidized nitrogen species in solution (NO2 - and NO3 -). With the use of the kinetic model, an optimal treatment strategy using two oxidation stages was derived. The first stage involved balancing NO x - and O2 redox chemistry to minimize aqueous nitrogen in the effluent, while the second stage mineralized the remaining TOC.</description><subject>Applied sciences</subject><subject>CHEMICAL EXPLOSIVES</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>Exact sciences and technology</subject><subject>General treatment and storage processes</subject><subject>HYDROLYSIS</subject><subject>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</subject><subject>Other wastewaters</subject><subject>OXIDATION</subject><subject>Pollution</subject><subject>WASTE PROCESSING</subject><subject>Wastes</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkM9uEzEQhy1EJULhwBtYAg49LIx37f3DDUVpA1Q0QACJizX12sRls448LjRSDxzptY_YJ2HDonLhMJqR5pvfSB9jjwQ8E5CL5942DQxTfodNhMohUyDVXTaBuq4zVdfqHrtPdAYASkk5YZfzbRtDWtm4xo4vo8W0tn3iwfHpza_rt0OdDDXnn5GSpRc3P6_4e4sm-dDzN763yRvi2Ld8gWn1A7fEXYj8T2q3JU98EUN7bhLtIuf-64rPLjZdIP_d0gO257Aj-_Bv32cfD2fL6Tw7Pjl6NX15nGGh8pQVSgksnSiNtNLJsoCqkblT5tQItKIQqqzzFqASyiAKC41qK-tOG2lkA1VR7LPHY26g5DUZn6xZmdD31iSd71zUNQzUwUiZGIiidXoT_RrjVgvQO7n6Vu7APhnZDZLBzkXsjad_BzkUoKoBy0bMD_IubtcYv-myKiqll4sP-p2cfjl83XzSu9inI4-G9Fk4j_2g5T_vfwNampdD</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Dell'Orco, P</creator><creator>Eaton, E</creator><creator>McInroy, R</creator><creator>Flesner, R</creator><creator>Walker, T</creator><creator>Muske, K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19991201</creationdate><title>Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives</title><author>Dell'Orco, P ; Eaton, E ; McInroy, R ; Flesner, R ; Walker, T ; Muske, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-3551a6f16c4e4f46307942f5cbc1ae1315682d00715caa1e095d7efb94c490733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>CHEMICAL EXPLOSIVES</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>Exact sciences and technology</topic><topic>General treatment and storage processes</topic><topic>HYDROLYSIS</topic><topic>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</topic><topic>Other wastewaters</topic><topic>OXIDATION</topic><topic>Pollution</topic><topic>WASTE PROCESSING</topic><topic>Wastes</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell'Orco, P</creatorcontrib><creatorcontrib>Eaton, E</creatorcontrib><creatorcontrib>McInroy, R</creatorcontrib><creatorcontrib>Flesner, R</creatorcontrib><creatorcontrib>Walker, T</creatorcontrib><creatorcontrib>Muske, K</creatorcontrib><creatorcontrib>SmithKline Beecham Pharmaceuticals, King of Prussia, PA (US)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell'Orco, P</au><au>Eaton, E</au><au>McInroy, R</au><au>Flesner, R</au><au>Walker, T</au><au>Muske, K</au><aucorp>SmithKline Beecham Pharmaceuticals, King of Prussia, PA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>38</volume><issue>12</issue><spage>4585</spage><epage>4593</epage><pages>4585-4593</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Bench-scale studies demonstrated the efficacy of hydrothermal oxidation for the treatment of wastes derived from the alkaline hydrolysis of the high explosive PBX 9404 (94% HMX, 3% nitrocellulose, and 3% chloroethyl phosphate). Specifically, chemical kinetics studies were used to deduce major global reaction pathways, and to develop a kinetic model. Although the hydrolysis liquor is a complicated waste matrix, a three-parameter kinetic model captured major reaction paths. The kinetic model used total organic carbon (TOC) as a bulk parameter for dissolved organic materials, while NO x - was used to represent the oxidized nitrogen species in solution (NO2 - and NO3 -). With the use of the kinetic model, an optimal treatment strategy using two oxidation stages was derived. The first stage involved balancing NO x - and O2 redox chemistry to minimize aqueous nitrogen in the effluent, while the second stage mineralized the remaining TOC.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie9901022</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1999-12, Vol.38 (12), p.4585-4593 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_20005880 |
source | ACS Publications |
subjects | Applied sciences CHEMICAL EXPLOSIVES CHEMICAL REACTION KINETICS ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Exact sciences and technology General treatment and storage processes HYDROLYSIS MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE Other wastewaters OXIDATION Pollution WASTE PROCESSING Wastes Wastewaters Water treatment and pollution |
title | Hydrothermal Treatment of C−N−O−H Wastes: Reaction Kinetics and Pathways for Hydrolysis Products of High Explosives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Treatment%20of%20C%E2%88%92N%E2%88%92O%E2%88%92H%20Wastes:%E2%80%89%20Reaction%20Kinetics%20and%20Pathways%20for%20Hydrolysis%20Products%20of%20High%20Explosives&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Dell'Orco,%20P&rft.aucorp=SmithKline%20Beecham%20Pharmaceuticals,%20King%20of%20Prussia,%20PA%20(US)&rft.date=1999-12-01&rft.volume=38&rft.issue=12&rft.spage=4585&rft.epage=4593&rft.pages=4585-4593&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie9901022&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_Q4CZFJ9V_2%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |