A computational fluid dynamics model to estimate local quantities in firebrand char oxidation
Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article prese...
Gespeichert in:
Veröffentlicht in: | Journal of fire sciences 2023-11, Vol.41 (6), p.241-268 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 6 |
container_start_page | 241 |
container_title | Journal of fire sciences |
container_volume | 41 |
creator | Banagiri, Shrikar Meadows, Joseph Lattimer, Brian Y |
description | Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion. |
doi_str_mv | 10.1177/07349041231195847 |
format | Article |
fullrecord | <record><control><sourceid>sage_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2000235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_07349041231195847</sage_id><sourcerecordid>10.1177_07349041231195847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrX6Au-B-al4z6SxLUSsU3OhShjS5sSkzSU0yYP_e1LoThAt3cR6ccxC6pWRGqZT3RHLREkEZp7St50KeoQmtOanmRLTnaHLEqyPhEl2ltCOEUS7pBL0vsA7Dfswqu-BVj20_OoPNwavB6YSHYKDHOWBI2Q0qA-6DLrTPUfnssoOEncfWRdhE5Q3WWxVx-HLmx-8aXVjVJ7j5_VP09vjwulxV65en5-ViXWnW8FxZDY0WrZCs2QBRAA2fC8NKZtNS2QjWiJpRZtuWl7PSgGBMCGILrgwxfIruTr6hpOySdhn0VgfvQeeOkdKW14VETyQdQ0oRbLePpVI8dJR0xxG7PyMWzeykSeoDul0YY9ko_SP4BjqdcZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><source>Access via SAGE</source><creator>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</creator><creatorcontrib>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</creatorcontrib><description>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</description><identifier>ISSN: 0734-9041</identifier><identifier>EISSN: 1530-8049</identifier><identifier>DOI: 10.1177/07349041231195847</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of fire sciences, 2023-11, Vol.41 (6), p.241-268</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</cites><orcidid>0000-0002-3974-5099 ; 0000-0002-4807-2746 ; 0000000248072746 ; 0000000239745099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/07349041231195847$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/07349041231195847$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2000235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Banagiri, Shrikar</creatorcontrib><creatorcontrib>Meadows, Joseph</creatorcontrib><creatorcontrib>Lattimer, Brian Y</creatorcontrib><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><title>Journal of fire sciences</title><description>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</description><issn>0734-9041</issn><issn>1530-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrX6Au-B-al4z6SxLUSsU3OhShjS5sSkzSU0yYP_e1LoThAt3cR6ccxC6pWRGqZT3RHLREkEZp7St50KeoQmtOanmRLTnaHLEqyPhEl2ltCOEUS7pBL0vsA7Dfswqu-BVj20_OoPNwavB6YSHYKDHOWBI2Q0qA-6DLrTPUfnssoOEncfWRdhE5Q3WWxVx-HLmx-8aXVjVJ7j5_VP09vjwulxV65en5-ViXWnW8FxZDY0WrZCs2QBRAA2fC8NKZtNS2QjWiJpRZtuWl7PSgGBMCGILrgwxfIruTr6hpOySdhn0VgfvQeeOkdKW14VETyQdQ0oRbLePpVI8dJR0xxG7PyMWzeykSeoDul0YY9ko_SP4BjqdcZE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Banagiri, Shrikar</creator><creator>Meadows, Joseph</creator><creator>Lattimer, Brian Y</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3974-5099</orcidid><orcidid>https://orcid.org/0000-0002-4807-2746</orcidid><orcidid>https://orcid.org/0000000248072746</orcidid><orcidid>https://orcid.org/0000000239745099</orcidid></search><sort><creationdate>20231101</creationdate><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><author>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banagiri, Shrikar</creatorcontrib><creatorcontrib>Meadows, Joseph</creatorcontrib><creatorcontrib>Lattimer, Brian Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of fire sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banagiri, Shrikar</au><au>Meadows, Joseph</au><au>Lattimer, Brian Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</atitle><jtitle>Journal of fire sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>41</volume><issue>6</issue><spage>241</spage><epage>268</epage><pages>241-268</pages><issn>0734-9041</issn><eissn>1530-8049</eissn><abstract>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/07349041231195847</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-3974-5099</orcidid><orcidid>https://orcid.org/0000-0002-4807-2746</orcidid><orcidid>https://orcid.org/0000000248072746</orcidid><orcidid>https://orcid.org/0000000239745099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-9041 |
ispartof | Journal of fire sciences, 2023-11, Vol.41 (6), p.241-268 |
issn | 0734-9041 1530-8049 |
language | eng |
recordid | cdi_osti_scitechconnect_2000235 |
source | Access via SAGE |
title | A computational fluid dynamics model to estimate local quantities in firebrand char oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20fluid%20dynamics%20model%20to%20estimate%20local%20quantities%20in%20firebrand%20char%20oxidation&rft.jtitle=Journal%20of%20fire%20sciences&rft.au=Banagiri,%20Shrikar&rft.date=2023-11-01&rft.volume=41&rft.issue=6&rft.spage=241&rft.epage=268&rft.pages=241-268&rft.issn=0734-9041&rft.eissn=1530-8049&rft_id=info:doi/10.1177/07349041231195847&rft_dat=%3Csage_osti_%3E10.1177_07349041231195847%3C/sage_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_07349041231195847&rfr_iscdi=true |