A computational fluid dynamics model to estimate local quantities in firebrand char oxidation

Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fire sciences 2023-11, Vol.41 (6), p.241-268
Hauptverfasser: Banagiri, Shrikar, Meadows, Joseph, Lattimer, Brian Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 6
container_start_page 241
container_title Journal of fire sciences
container_volume 41
creator Banagiri, Shrikar
Meadows, Joseph
Lattimer, Brian Y
description Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.
doi_str_mv 10.1177/07349041231195847
format Article
fullrecord <record><control><sourceid>sage_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2000235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_07349041231195847</sage_id><sourcerecordid>10.1177_07349041231195847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrX6Au-B-al4z6SxLUSsU3OhShjS5sSkzSU0yYP_e1LoThAt3cR6ccxC6pWRGqZT3RHLREkEZp7St50KeoQmtOanmRLTnaHLEqyPhEl2ltCOEUS7pBL0vsA7Dfswqu-BVj20_OoPNwavB6YSHYKDHOWBI2Q0qA-6DLrTPUfnssoOEncfWRdhE5Q3WWxVx-HLmx-8aXVjVJ7j5_VP09vjwulxV65en5-ViXWnW8FxZDY0WrZCs2QBRAA2fC8NKZtNS2QjWiJpRZtuWl7PSgGBMCGILrgwxfIruTr6hpOySdhn0VgfvQeeOkdKW14VETyQdQ0oRbLePpVI8dJR0xxG7PyMWzeykSeoDul0YY9ko_SP4BjqdcZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><source>Access via SAGE</source><creator>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</creator><creatorcontrib>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</creatorcontrib><description>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</description><identifier>ISSN: 0734-9041</identifier><identifier>EISSN: 1530-8049</identifier><identifier>DOI: 10.1177/07349041231195847</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of fire sciences, 2023-11, Vol.41 (6), p.241-268</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</cites><orcidid>0000-0002-3974-5099 ; 0000-0002-4807-2746 ; 0000000248072746 ; 0000000239745099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/07349041231195847$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/07349041231195847$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2000235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Banagiri, Shrikar</creatorcontrib><creatorcontrib>Meadows, Joseph</creatorcontrib><creatorcontrib>Lattimer, Brian Y</creatorcontrib><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><title>Journal of fire sciences</title><description>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</description><issn>0734-9041</issn><issn>1530-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrX6Au-B-al4z6SxLUSsU3OhShjS5sSkzSU0yYP_e1LoThAt3cR6ccxC6pWRGqZT3RHLREkEZp7St50KeoQmtOanmRLTnaHLEqyPhEl2ltCOEUS7pBL0vsA7Dfswqu-BVj20_OoPNwavB6YSHYKDHOWBI2Q0qA-6DLrTPUfnssoOEncfWRdhE5Q3WWxVx-HLmx-8aXVjVJ7j5_VP09vjwulxV65en5-ViXWnW8FxZDY0WrZCs2QBRAA2fC8NKZtNS2QjWiJpRZtuWl7PSgGBMCGILrgwxfIruTr6hpOySdhn0VgfvQeeOkdKW14VETyQdQ0oRbLePpVI8dJR0xxG7PyMWzeykSeoDul0YY9ko_SP4BjqdcZE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Banagiri, Shrikar</creator><creator>Meadows, Joseph</creator><creator>Lattimer, Brian Y</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3974-5099</orcidid><orcidid>https://orcid.org/0000-0002-4807-2746</orcidid><orcidid>https://orcid.org/0000000248072746</orcidid><orcidid>https://orcid.org/0000000239745099</orcidid></search><sort><creationdate>20231101</creationdate><title>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</title><author>Banagiri, Shrikar ; Meadows, Joseph ; Lattimer, Brian Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-fce6c494726be0aee6384d2073d917642645212f993993f7de422440f3d9ad0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banagiri, Shrikar</creatorcontrib><creatorcontrib>Meadows, Joseph</creatorcontrib><creatorcontrib>Lattimer, Brian Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of fire sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banagiri, Shrikar</au><au>Meadows, Joseph</au><au>Lattimer, Brian Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational fluid dynamics model to estimate local quantities in firebrand char oxidation</atitle><jtitle>Journal of fire sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>41</volume><issue>6</issue><spage>241</spage><epage>268</epage><pages>241-268</pages><issn>0734-9041</issn><eissn>1530-8049</eissn><abstract>Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/07349041231195847</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-3974-5099</orcidid><orcidid>https://orcid.org/0000-0002-4807-2746</orcidid><orcidid>https://orcid.org/0000000248072746</orcidid><orcidid>https://orcid.org/0000000239745099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-9041
ispartof Journal of fire sciences, 2023-11, Vol.41 (6), p.241-268
issn 0734-9041
1530-8049
language eng
recordid cdi_osti_scitechconnect_2000235
source Access via SAGE
title A computational fluid dynamics model to estimate local quantities in firebrand char oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20fluid%20dynamics%20model%20to%20estimate%20local%20quantities%20in%20firebrand%20char%20oxidation&rft.jtitle=Journal%20of%20fire%20sciences&rft.au=Banagiri,%20Shrikar&rft.date=2023-11-01&rft.volume=41&rft.issue=6&rft.spage=241&rft.epage=268&rft.pages=241-268&rft.issn=0734-9041&rft.eissn=1530-8049&rft_id=info:doi/10.1177/07349041231195847&rft_dat=%3Csage_osti_%3E10.1177_07349041231195847%3C/sage_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_07349041231195847&rfr_iscdi=true