Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion

Porous media combustion (PMC) relies on internal heat recirculation in an open-cell ceramic foam matrix to enhance the flame speed of fuels with poor combustion properties. Volume-averaged simulations are often used to study the combustion performance and pollutant emissions of such systems. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2023-11, Vol.257 (P2), p.113020, Article 113020
Hauptverfasser: Zirwes, Thorsten, Vignat, Guillaume, Toro, Edna R., Boigné, Emeric, Younes, Khaled, Trimis, Dimosthenis, Ihme, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue P2
container_start_page 113020
container_title Combustion and flame
container_volume 257
creator Zirwes, Thorsten
Vignat, Guillaume
Toro, Edna R.
Boigné, Emeric
Younes, Khaled
Trimis, Dimosthenis
Ihme, Matthias
description Porous media combustion (PMC) relies on internal heat recirculation in an open-cell ceramic foam matrix to enhance the flame speed of fuels with poor combustion properties. Volume-averaged simulations are often used to study the combustion performance and pollutant emissions of such systems. However, due to the varying complexity of matrix geometries found in practical burners, as well as the wide range of closure models for the constitutive relations of the solid phase, contradicting statements about the predictive accuracy of these volume-averaged models can be found in the literature. In this work, we propose an open-source modeling framework for accurate volume-averaged PMC simulations by using first-principles methods to determine effective properties used in closure models. This framework relies on adequately characterizing the topology of the solid matrix, using commonly available X-ray computed microtomography. With this approach, significant improvements in accuracy are reported compared to empirical models from the literature. The framework based on first-principle evaluations of constitutive relations is compared against experimental measurements conducted on an interface-stabilized burner operated with premixed NH3/H2-air. The model shows good agreement for exhaust gas composition and stability limits. The proposed simulation framework performs significantly better than state-of-the-art techniques that employ commonly used empirical correlations for effective matrix properties. We present a new open-source simulation framework for improved characterization of porous media combustion. By utilizing µCT techniques, accurate effective matrix properties can be determined from first-principle simulations. These effective properties are used in closure models for 1D volume-averaged reacting flow simulations using appropriate sub-models for heat recirculation. This modeling framework is able to reliably predict stability limits while conventional closure models yield erroneous trends. Assessment of the resulting modeling framework is performed using experiments with exhaust gas characterization performed on a NH3/H2-air porous media burner.
doi_str_mv 10.1016/j.combustflame.2023.113020
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1999454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218023003954</els_id><sourcerecordid>S0010218023003954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3180-68af9ec961c21315106aef041b78c23fe7a9e856e3ebe613ad4de4c76c049bd3</originalsourceid><addsrcrecordid>eNqNkU1OwzAQhS0EEuXnDhZ7F4-dpA07VH6KhGDTBTtr4kxaV0lc2WkFHISbcAFORkpYsGQ1m_e-pzePsQuQY5CQXa7H1jfFNnZVjQ2NlVR6DKClkgdsBGmaCZUrOGQjKUEKBVN5zE5iXEspJ4nWI_bx0GyC37l2yXe-3jYkcEcBl1Ty6JptjZ3zbeS-4g12wb2K2GHhavfeC36jewHvVsFvlyteukC24y8i4Bv_-pwtuF1hQNtRcO8_rCt-vdnUzuLg8_xpri_nSqALf4Bn7KjCOtL57z1li7vbxWwuHp_vH2bXj8LqvovIpljlZPMMrAINKcgMqZIJFJOpVbqiCeY0TTPSVFAGGsukpMROMiuTvCj1KbsYsL5PNdG6juzK-rbtSxjI8zxJk150NYhs8DEGqswmuAbDmwFp9iuYtfm7gtmvYIYVevPNYKa-xc5R2KdQa2n4lCm9-w_mG1T1m-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion</title><source>Elsevier ScienceDirect Journals</source><creator>Zirwes, Thorsten ; Vignat, Guillaume ; Toro, Edna R. ; Boigné, Emeric ; Younes, Khaled ; Trimis, Dimosthenis ; Ihme, Matthias</creator><creatorcontrib>Zirwes, Thorsten ; Vignat, Guillaume ; Toro, Edna R. ; Boigné, Emeric ; Younes, Khaled ; Trimis, Dimosthenis ; Ihme, Matthias</creatorcontrib><description>Porous media combustion (PMC) relies on internal heat recirculation in an open-cell ceramic foam matrix to enhance the flame speed of fuels with poor combustion properties. Volume-averaged simulations are often used to study the combustion performance and pollutant emissions of such systems. However, due to the varying complexity of matrix geometries found in practical burners, as well as the wide range of closure models for the constitutive relations of the solid phase, contradicting statements about the predictive accuracy of these volume-averaged models can be found in the literature. In this work, we propose an open-source modeling framework for accurate volume-averaged PMC simulations by using first-principles methods to determine effective properties used in closure models. This framework relies on adequately characterizing the topology of the solid matrix, using commonly available X-ray computed microtomography. With this approach, significant improvements in accuracy are reported compared to empirical models from the literature. The framework based on first-principle evaluations of constitutive relations is compared against experimental measurements conducted on an interface-stabilized burner operated with premixed NH3/H2-air. The model shows good agreement for exhaust gas composition and stability limits. The proposed simulation framework performs significantly better than state-of-the-art techniques that employ commonly used empirical correlations for effective matrix properties. We present a new open-source simulation framework for improved characterization of porous media combustion. By utilizing µCT techniques, accurate effective matrix properties can be determined from first-principle simulations. These effective properties are used in closure models for 1D volume-averaged reacting flow simulations using appropriate sub-models for heat recirculation. This modeling framework is able to reliably predict stability limits while conventional closure models yield erroneous trends. Assessment of the resulting modeling framework is performed using experiments with exhaust gas characterization performed on a NH3/H2-air porous media burner.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2023.113020</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ammonia combustion ; Matrix stabilized combustion ; Volume-averaged modeling ; X-ray computed microtomography</subject><ispartof>Combustion and flame, 2023-11, Vol.257 (P2), p.113020, Article 113020</ispartof><rights>2023 The Combustion Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3180-68af9ec961c21315106aef041b78c23fe7a9e856e3ebe613ad4de4c76c049bd3</citedby><cites>FETCH-LOGICAL-c3180-68af9ec961c21315106aef041b78c23fe7a9e856e3ebe613ad4de4c76c049bd3</cites><orcidid>0000-0002-0481-4461 ; 0000-0001-9562-0963 ; 0000-0002-4158-7050 ; 0000-0002-5050-0009 ; 0000-0002-3563-1422 ; 0000-0002-8868-4325 ; 0000-0002-1234-5124 ; 0000000235631422 ; 0000000212345124 ; 0000000204814461 ; 0000000250500009 ; 0000000288684325 ; 0000000195620963 ; 0000000241587050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218023003954$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1999454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zirwes, Thorsten</creatorcontrib><creatorcontrib>Vignat, Guillaume</creatorcontrib><creatorcontrib>Toro, Edna R.</creatorcontrib><creatorcontrib>Boigné, Emeric</creatorcontrib><creatorcontrib>Younes, Khaled</creatorcontrib><creatorcontrib>Trimis, Dimosthenis</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><title>Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion</title><title>Combustion and flame</title><description>Porous media combustion (PMC) relies on internal heat recirculation in an open-cell ceramic foam matrix to enhance the flame speed of fuels with poor combustion properties. Volume-averaged simulations are often used to study the combustion performance and pollutant emissions of such systems. However, due to the varying complexity of matrix geometries found in practical burners, as well as the wide range of closure models for the constitutive relations of the solid phase, contradicting statements about the predictive accuracy of these volume-averaged models can be found in the literature. In this work, we propose an open-source modeling framework for accurate volume-averaged PMC simulations by using first-principles methods to determine effective properties used in closure models. This framework relies on adequately characterizing the topology of the solid matrix, using commonly available X-ray computed microtomography. With this approach, significant improvements in accuracy are reported compared to empirical models from the literature. The framework based on first-principle evaluations of constitutive relations is compared against experimental measurements conducted on an interface-stabilized burner operated with premixed NH3/H2-air. The model shows good agreement for exhaust gas composition and stability limits. The proposed simulation framework performs significantly better than state-of-the-art techniques that employ commonly used empirical correlations for effective matrix properties. We present a new open-source simulation framework for improved characterization of porous media combustion. By utilizing µCT techniques, accurate effective matrix properties can be determined from first-principle simulations. These effective properties are used in closure models for 1D volume-averaged reacting flow simulations using appropriate sub-models for heat recirculation. This modeling framework is able to reliably predict stability limits while conventional closure models yield erroneous trends. Assessment of the resulting modeling framework is performed using experiments with exhaust gas characterization performed on a NH3/H2-air porous media burner.</description><subject>Ammonia combustion</subject><subject>Matrix stabilized combustion</subject><subject>Volume-averaged modeling</subject><subject>X-ray computed microtomography</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkU1OwzAQhS0EEuXnDhZ7F4-dpA07VH6KhGDTBTtr4kxaV0lc2WkFHISbcAFORkpYsGQ1m_e-pzePsQuQY5CQXa7H1jfFNnZVjQ2NlVR6DKClkgdsBGmaCZUrOGQjKUEKBVN5zE5iXEspJ4nWI_bx0GyC37l2yXe-3jYkcEcBl1Ty6JptjZ3zbeS-4g12wb2K2GHhavfeC36jewHvVsFvlyteukC24y8i4Bv_-pwtuF1hQNtRcO8_rCt-vdnUzuLg8_xpri_nSqALf4Bn7KjCOtL57z1li7vbxWwuHp_vH2bXj8LqvovIpljlZPMMrAINKcgMqZIJFJOpVbqiCeY0TTPSVFAGGsukpMROMiuTvCj1KbsYsL5PNdG6juzK-rbtSxjI8zxJk150NYhs8DEGqswmuAbDmwFp9iuYtfm7gtmvYIYVevPNYKa-xc5R2KdQa2n4lCm9-w_mG1T1m-s</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Zirwes, Thorsten</creator><creator>Vignat, Guillaume</creator><creator>Toro, Edna R.</creator><creator>Boigné, Emeric</creator><creator>Younes, Khaled</creator><creator>Trimis, Dimosthenis</creator><creator>Ihme, Matthias</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0481-4461</orcidid><orcidid>https://orcid.org/0000-0001-9562-0963</orcidid><orcidid>https://orcid.org/0000-0002-4158-7050</orcidid><orcidid>https://orcid.org/0000-0002-5050-0009</orcidid><orcidid>https://orcid.org/0000-0002-3563-1422</orcidid><orcidid>https://orcid.org/0000-0002-8868-4325</orcidid><orcidid>https://orcid.org/0000-0002-1234-5124</orcidid><orcidid>https://orcid.org/0000000235631422</orcidid><orcidid>https://orcid.org/0000000212345124</orcidid><orcidid>https://orcid.org/0000000204814461</orcidid><orcidid>https://orcid.org/0000000250500009</orcidid><orcidid>https://orcid.org/0000000288684325</orcidid><orcidid>https://orcid.org/0000000195620963</orcidid><orcidid>https://orcid.org/0000000241587050</orcidid></search><sort><creationdate>202311</creationdate><title>Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion</title><author>Zirwes, Thorsten ; Vignat, Guillaume ; Toro, Edna R. ; Boigné, Emeric ; Younes, Khaled ; Trimis, Dimosthenis ; Ihme, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3180-68af9ec961c21315106aef041b78c23fe7a9e856e3ebe613ad4de4c76c049bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia combustion</topic><topic>Matrix stabilized combustion</topic><topic>Volume-averaged modeling</topic><topic>X-ray computed microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zirwes, Thorsten</creatorcontrib><creatorcontrib>Vignat, Guillaume</creatorcontrib><creatorcontrib>Toro, Edna R.</creatorcontrib><creatorcontrib>Boigné, Emeric</creatorcontrib><creatorcontrib>Younes, Khaled</creatorcontrib><creatorcontrib>Trimis, Dimosthenis</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zirwes, Thorsten</au><au>Vignat, Guillaume</au><au>Toro, Edna R.</au><au>Boigné, Emeric</au><au>Younes, Khaled</au><au>Trimis, Dimosthenis</au><au>Ihme, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion</atitle><jtitle>Combustion and flame</jtitle><date>2023-11</date><risdate>2023</risdate><volume>257</volume><issue>P2</issue><spage>113020</spage><pages>113020-</pages><artnum>113020</artnum><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Porous media combustion (PMC) relies on internal heat recirculation in an open-cell ceramic foam matrix to enhance the flame speed of fuels with poor combustion properties. Volume-averaged simulations are often used to study the combustion performance and pollutant emissions of such systems. However, due to the varying complexity of matrix geometries found in practical burners, as well as the wide range of closure models for the constitutive relations of the solid phase, contradicting statements about the predictive accuracy of these volume-averaged models can be found in the literature. In this work, we propose an open-source modeling framework for accurate volume-averaged PMC simulations by using first-principles methods to determine effective properties used in closure models. This framework relies on adequately characterizing the topology of the solid matrix, using commonly available X-ray computed microtomography. With this approach, significant improvements in accuracy are reported compared to empirical models from the literature. The framework based on first-principle evaluations of constitutive relations is compared against experimental measurements conducted on an interface-stabilized burner operated with premixed NH3/H2-air. The model shows good agreement for exhaust gas composition and stability limits. The proposed simulation framework performs significantly better than state-of-the-art techniques that employ commonly used empirical correlations for effective matrix properties. We present a new open-source simulation framework for improved characterization of porous media combustion. By utilizing µCT techniques, accurate effective matrix properties can be determined from first-principle simulations. These effective properties are used in closure models for 1D volume-averaged reacting flow simulations using appropriate sub-models for heat recirculation. This modeling framework is able to reliably predict stability limits while conventional closure models yield erroneous trends. Assessment of the resulting modeling framework is performed using experiments with exhaust gas characterization performed on a NH3/H2-air porous media burner.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2023.113020</doi><orcidid>https://orcid.org/0000-0002-0481-4461</orcidid><orcidid>https://orcid.org/0000-0001-9562-0963</orcidid><orcidid>https://orcid.org/0000-0002-4158-7050</orcidid><orcidid>https://orcid.org/0000-0002-5050-0009</orcidid><orcidid>https://orcid.org/0000-0002-3563-1422</orcidid><orcidid>https://orcid.org/0000-0002-8868-4325</orcidid><orcidid>https://orcid.org/0000-0002-1234-5124</orcidid><orcidid>https://orcid.org/0000000235631422</orcidid><orcidid>https://orcid.org/0000000212345124</orcidid><orcidid>https://orcid.org/0000000204814461</orcidid><orcidid>https://orcid.org/0000000250500009</orcidid><orcidid>https://orcid.org/0000000288684325</orcidid><orcidid>https://orcid.org/0000000195620963</orcidid><orcidid>https://orcid.org/0000000241587050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2023-11, Vol.257 (P2), p.113020, Article 113020
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_1999454
source Elsevier ScienceDirect Journals
subjects Ammonia combustion
Matrix stabilized combustion
Volume-averaged modeling
X-ray computed microtomography
title Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization: Application to NH3/H2-air combustion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20volume-averaged%20simulations%20of%20matrix-stabilized%20combustion%20through%20direct%20X-ray%20%C2%B5CT%20characterization:%20Application%20to%20NH3/H2-air%20combustion&rft.jtitle=Combustion%20and%20flame&rft.au=Zirwes,%20Thorsten&rft.date=2023-11&rft.volume=257&rft.issue=P2&rft.spage=113020&rft.pages=113020-&rft.artnum=113020&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2023.113020&rft_dat=%3Celsevier_osti_%3ES0010218023003954%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0010218023003954&rfr_iscdi=true