On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers

The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-12, Vol.33 (52), p.n/a
Hauptverfasser: Vanderspikken, Jochen, Liu, Zhen, Wu, Xiaocui, Beckers, Omar, Moro, Stefania, Quill, Tyler James, Liu, Quan, Goossens, Arwin, Marks, Adam, Weaver, Karrie, Hamid, Mouna, Goderis, Bart, Nies, Erik, Lemaur, Vincent, Beljonne, David, Salleo, Alberto, Lutsen, Laurence, Vandewal, Koen, Van Mele, Bruno, Costantini, Giovanni, Van den Brande, Niko, Maes, Wouter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 33
creator Vanderspikken, Jochen
Liu, Zhen
Wu, Xiaocui
Beckers, Omar
Moro, Stefania
Quill, Tyler James
Liu, Quan
Goossens, Arwin
Marks, Adam
Weaver, Karrie
Hamid, Mouna
Goderis, Bart
Nies, Erik
Lemaur, Vincent
Beljonne, David
Salleo, Alberto
Lutsen, Laurence
Vandewal, Koen
Van Mele, Bruno
Costantini, Giovanni
Van den Brande, Niko
Maes, Wouter
description The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform excellently in the envisaged applications, which raises the question if one should really care about these imperfections. This article looks at the relevance of chemical precision (and lack thereof) in conjugated polymers covering the entire spectrum from the molecular scale, to the micro and mesostructure, up to the device level. The different types of polymerization errors for the alkoxylated variant of the benchmark (semi)crystalline polymer poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTT) are identified, visualized, and quantified and a general strategy to avoid homocoupling is introduced. Through a combination of experiments and supported by simulations, it is shown that these coupling defects hinder fullerene intercalation and limit device performance as compared to the homocoupling‐free analog. This clearly demonstrates that structural defects do matter and should be generally avoided, in particular when the geometrical regularity of the polymer is essential. These insights likely go beyond the specific PBTTT derivatives studied here and are of general relevance for the wider organic electronics field. The relevance of careful molecular engineering of alternating conjugated polymers—for the solid‐state microstructure up to bulk (blend) material and device properties—is demonstrated here. Homocoupling defects are quantified by scanning tunneling microscopy, while rapid‐heat cool calorimetry and temperature‐resolved X‐ray diffraction analyses are combined to elucidate their effect on polymer/blend crystallinity, showing that structural defects do matter for organic electronics.
doi_str_mv 10.1002/adfm.202309403
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1999267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904816058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-7cfc05c5e9506de060aa96050549873994dfd9f5d005488ff8afd75758dc6ffb3</originalsourceid><addsrcrecordid>eNqFkc1vGjEQxVdVI5WSXnu2mjNkvJ92bohAi5QKDo2Um-V6x2DktYltVHHvH14jUHLsaUbzfm9mpFcUXylMKUB5L3s9TEsoK-A1VB-KEW1pO6mgZB_fevryqfgc4x6Adl1Vj4q_a0fSDslqOPiQpFNIvCbzHQ5GSUs2AZWJxjtiHFmHrXRGkYVFlYLPbXwgy6O1GNDlFS5hyCaZrvwGg86kPZGZzZLLgtuSuXf741Ym7MnG29OAId4WN1raiF-udVw8Lxe_5j8mT-vvq_nsaaIqVleTTmkFjWqQN9D2CC1IyVtooKk56yrO6173XDc95AljWjOp-67pGtarVuvf1bj4dtnrYzIiKpNQ7ZR3Ln8pKOe8bLsM3V2gQ_CvR4xJ7P0xP2-jKDnUjOaLLFPTC6WCjzGgFodgBhlOgoI4xyHOcYi3OLKBXwx_jMXTf2gxe1z-fPf-A2PlkBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904816058</pqid></control><display><type>article</type><title>On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers</title><source>Wiley-Blackwell Journals</source><creator>Vanderspikken, Jochen ; Liu, Zhen ; Wu, Xiaocui ; Beckers, Omar ; Moro, Stefania ; Quill, Tyler James ; Liu, Quan ; Goossens, Arwin ; Marks, Adam ; Weaver, Karrie ; Hamid, Mouna ; Goderis, Bart ; Nies, Erik ; Lemaur, Vincent ; Beljonne, David ; Salleo, Alberto ; Lutsen, Laurence ; Vandewal, Koen ; Van Mele, Bruno ; Costantini, Giovanni ; Van den Brande, Niko ; Maes, Wouter</creator><creatorcontrib>Vanderspikken, Jochen ; Liu, Zhen ; Wu, Xiaocui ; Beckers, Omar ; Moro, Stefania ; Quill, Tyler James ; Liu, Quan ; Goossens, Arwin ; Marks, Adam ; Weaver, Karrie ; Hamid, Mouna ; Goderis, Bart ; Nies, Erik ; Lemaur, Vincent ; Beljonne, David ; Salleo, Alberto ; Lutsen, Laurence ; Vandewal, Koen ; Van Mele, Bruno ; Costantini, Giovanni ; Van den Brande, Niko ; Maes, Wouter ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform excellently in the envisaged applications, which raises the question if one should really care about these imperfections. This article looks at the relevance of chemical precision (and lack thereof) in conjugated polymers covering the entire spectrum from the molecular scale, to the micro and mesostructure, up to the device level. The different types of polymerization errors for the alkoxylated variant of the benchmark (semi)crystalline polymer poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTT) are identified, visualized, and quantified and a general strategy to avoid homocoupling is introduced. Through a combination of experiments and supported by simulations, it is shown that these coupling defects hinder fullerene intercalation and limit device performance as compared to the homocoupling‐free analog. This clearly demonstrates that structural defects do matter and should be generally avoided, in particular when the geometrical regularity of the polymer is essential. These insights likely go beyond the specific PBTTT derivatives studied here and are of general relevance for the wider organic electronics field. The relevance of careful molecular engineering of alternating conjugated polymers—for the solid‐state microstructure up to bulk (blend) material and device properties—is demonstrated here. Homocoupling defects are quantified by scanning tunneling microscopy, while rapid‐heat cool calorimetry and temperature‐resolved X‐ray diffraction analyses are combined to elucidate their effect on polymer/blend crystallinity, showing that structural defects do matter for organic electronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202309403</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cross coupling ; Crystal defects ; Electronics ; fullerene co-crystals ; Fullerenes ; homocoupling ; Intercalation ; intermolecular charge-transfer absorption ; Materials science ; polymer ; polymer:fullerene co‐crystals ; Polymerization ; Polymers ; Stille cross-coupling ; structural defect quantification</subject><ispartof>Advanced functional materials, 2023-12, Vol.33 (52), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3843-7cfc05c5e9506de060aa96050549873994dfd9f5d005488ff8afd75758dc6ffb3</citedby><cites>FETCH-LOGICAL-c3843-7cfc05c5e9506de060aa96050549873994dfd9f5d005488ff8afd75758dc6ffb3</cites><orcidid>0000-0001-8445-4509 ; 0000-0001-7059-0155 ; 0000-0001-9819-4349 ; 0000-0001-5471-383X ; 0000-0003-2034-636X ; 0000-0002-7448-9123 ; 0000-0001-7883-3393 ; 0000-0002-4046-3582 ; 0000-0002-0807-5790 ; 0000-0001-5082-9990 ; 0000-0002-4404-9573 ; 0000-0003-2906-0747 ; 0000-0001-8601-286X ; 0000-0001-7916-3440 ; 0000-0002-7094-3501 ; 0000-0003-4498-6820 ; 0000-0002-3576-0945 ; 0000-0002-5324-6261 ; 0000-0003-1787-1091 ; 0000000198194349 ; 0000000208075790 ; 0000000253246261 ; 000000032034636X ; 0000000244049573 ; 0000000240463582 ; 0000000274489123 ; 0000000270943501 ; 0000000170590155 ; 0000000235760945 ; 0000000179163440 ; 000000015471383X ; 0000000150829990 ; 0000000178833393 ; 0000000329060747 ; 0000000344986820 ; 000000018601286X ; 0000000317871091 ; 0000000184454509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202309403$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202309403$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1999267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderspikken, Jochen</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Wu, Xiaocui</creatorcontrib><creatorcontrib>Beckers, Omar</creatorcontrib><creatorcontrib>Moro, Stefania</creatorcontrib><creatorcontrib>Quill, Tyler James</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Goossens, Arwin</creatorcontrib><creatorcontrib>Marks, Adam</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Hamid, Mouna</creatorcontrib><creatorcontrib>Goderis, Bart</creatorcontrib><creatorcontrib>Nies, Erik</creatorcontrib><creatorcontrib>Lemaur, Vincent</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Lutsen, Laurence</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Van Mele, Bruno</creatorcontrib><creatorcontrib>Costantini, Giovanni</creatorcontrib><creatorcontrib>Van den Brande, Niko</creatorcontrib><creatorcontrib>Maes, Wouter</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers</title><title>Advanced functional materials</title><description>The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform excellently in the envisaged applications, which raises the question if one should really care about these imperfections. This article looks at the relevance of chemical precision (and lack thereof) in conjugated polymers covering the entire spectrum from the molecular scale, to the micro and mesostructure, up to the device level. The different types of polymerization errors for the alkoxylated variant of the benchmark (semi)crystalline polymer poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTT) are identified, visualized, and quantified and a general strategy to avoid homocoupling is introduced. Through a combination of experiments and supported by simulations, it is shown that these coupling defects hinder fullerene intercalation and limit device performance as compared to the homocoupling‐free analog. This clearly demonstrates that structural defects do matter and should be generally avoided, in particular when the geometrical regularity of the polymer is essential. These insights likely go beyond the specific PBTTT derivatives studied here and are of general relevance for the wider organic electronics field. The relevance of careful molecular engineering of alternating conjugated polymers—for the solid‐state microstructure up to bulk (blend) material and device properties—is demonstrated here. Homocoupling defects are quantified by scanning tunneling microscopy, while rapid‐heat cool calorimetry and temperature‐resolved X‐ray diffraction analyses are combined to elucidate their effect on polymer/blend crystallinity, showing that structural defects do matter for organic electronics.</description><subject>Cross coupling</subject><subject>Crystal defects</subject><subject>Electronics</subject><subject>fullerene co-crystals</subject><subject>Fullerenes</subject><subject>homocoupling</subject><subject>Intercalation</subject><subject>intermolecular charge-transfer absorption</subject><subject>Materials science</subject><subject>polymer</subject><subject>polymer:fullerene co‐crystals</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Stille cross-coupling</subject><subject>structural defect quantification</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1vGjEQxVdVI5WSXnu2mjNkvJ92bohAi5QKDo2Um-V6x2DktYltVHHvH14jUHLsaUbzfm9mpFcUXylMKUB5L3s9TEsoK-A1VB-KEW1pO6mgZB_fevryqfgc4x6Adl1Vj4q_a0fSDslqOPiQpFNIvCbzHQ5GSUs2AZWJxjtiHFmHrXRGkYVFlYLPbXwgy6O1GNDlFS5hyCaZrvwGg86kPZGZzZLLgtuSuXf741Ym7MnG29OAId4WN1raiF-udVw8Lxe_5j8mT-vvq_nsaaIqVleTTmkFjWqQN9D2CC1IyVtooKk56yrO6173XDc95AljWjOp-67pGtarVuvf1bj4dtnrYzIiKpNQ7ZR3Ln8pKOe8bLsM3V2gQ_CvR4xJ7P0xP2-jKDnUjOaLLFPTC6WCjzGgFodgBhlOgoI4xyHOcYi3OLKBXwx_jMXTf2gxe1z-fPf-A2PlkBM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Vanderspikken, Jochen</creator><creator>Liu, Zhen</creator><creator>Wu, Xiaocui</creator><creator>Beckers, Omar</creator><creator>Moro, Stefania</creator><creator>Quill, Tyler James</creator><creator>Liu, Quan</creator><creator>Goossens, Arwin</creator><creator>Marks, Adam</creator><creator>Weaver, Karrie</creator><creator>Hamid, Mouna</creator><creator>Goderis, Bart</creator><creator>Nies, Erik</creator><creator>Lemaur, Vincent</creator><creator>Beljonne, David</creator><creator>Salleo, Alberto</creator><creator>Lutsen, Laurence</creator><creator>Vandewal, Koen</creator><creator>Van Mele, Bruno</creator><creator>Costantini, Giovanni</creator><creator>Van den Brande, Niko</creator><creator>Maes, Wouter</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8445-4509</orcidid><orcidid>https://orcid.org/0000-0001-7059-0155</orcidid><orcidid>https://orcid.org/0000-0001-9819-4349</orcidid><orcidid>https://orcid.org/0000-0001-5471-383X</orcidid><orcidid>https://orcid.org/0000-0003-2034-636X</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0001-7883-3393</orcidid><orcidid>https://orcid.org/0000-0002-4046-3582</orcidid><orcidid>https://orcid.org/0000-0002-0807-5790</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000-0002-4404-9573</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0001-8601-286X</orcidid><orcidid>https://orcid.org/0000-0001-7916-3440</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0003-4498-6820</orcidid><orcidid>https://orcid.org/0000-0002-3576-0945</orcidid><orcidid>https://orcid.org/0000-0002-5324-6261</orcidid><orcidid>https://orcid.org/0000-0003-1787-1091</orcidid><orcidid>https://orcid.org/0000000198194349</orcidid><orcidid>https://orcid.org/0000000208075790</orcidid><orcidid>https://orcid.org/0000000253246261</orcidid><orcidid>https://orcid.org/000000032034636X</orcidid><orcidid>https://orcid.org/0000000244049573</orcidid><orcidid>https://orcid.org/0000000240463582</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000270943501</orcidid><orcidid>https://orcid.org/0000000170590155</orcidid><orcidid>https://orcid.org/0000000235760945</orcidid><orcidid>https://orcid.org/0000000179163440</orcidid><orcidid>https://orcid.org/000000015471383X</orcidid><orcidid>https://orcid.org/0000000150829990</orcidid><orcidid>https://orcid.org/0000000178833393</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid><orcidid>https://orcid.org/0000000344986820</orcidid><orcidid>https://orcid.org/000000018601286X</orcidid><orcidid>https://orcid.org/0000000317871091</orcidid><orcidid>https://orcid.org/0000000184454509</orcidid></search><sort><creationdate>20231201</creationdate><title>On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers</title><author>Vanderspikken, Jochen ; Liu, Zhen ; Wu, Xiaocui ; Beckers, Omar ; Moro, Stefania ; Quill, Tyler James ; Liu, Quan ; Goossens, Arwin ; Marks, Adam ; Weaver, Karrie ; Hamid, Mouna ; Goderis, Bart ; Nies, Erik ; Lemaur, Vincent ; Beljonne, David ; Salleo, Alberto ; Lutsen, Laurence ; Vandewal, Koen ; Van Mele, Bruno ; Costantini, Giovanni ; Van den Brande, Niko ; Maes, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-7cfc05c5e9506de060aa96050549873994dfd9f5d005488ff8afd75758dc6ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cross coupling</topic><topic>Crystal defects</topic><topic>Electronics</topic><topic>fullerene co-crystals</topic><topic>Fullerenes</topic><topic>homocoupling</topic><topic>Intercalation</topic><topic>intermolecular charge-transfer absorption</topic><topic>Materials science</topic><topic>polymer</topic><topic>polymer:fullerene co‐crystals</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Stille cross-coupling</topic><topic>structural defect quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderspikken, Jochen</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Wu, Xiaocui</creatorcontrib><creatorcontrib>Beckers, Omar</creatorcontrib><creatorcontrib>Moro, Stefania</creatorcontrib><creatorcontrib>Quill, Tyler James</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Goossens, Arwin</creatorcontrib><creatorcontrib>Marks, Adam</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Hamid, Mouna</creatorcontrib><creatorcontrib>Goderis, Bart</creatorcontrib><creatorcontrib>Nies, Erik</creatorcontrib><creatorcontrib>Lemaur, Vincent</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Lutsen, Laurence</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Van Mele, Bruno</creatorcontrib><creatorcontrib>Costantini, Giovanni</creatorcontrib><creatorcontrib>Van den Brande, Niko</creatorcontrib><creatorcontrib>Maes, Wouter</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderspikken, Jochen</au><au>Liu, Zhen</au><au>Wu, Xiaocui</au><au>Beckers, Omar</au><au>Moro, Stefania</au><au>Quill, Tyler James</au><au>Liu, Quan</au><au>Goossens, Arwin</au><au>Marks, Adam</au><au>Weaver, Karrie</au><au>Hamid, Mouna</au><au>Goderis, Bart</au><au>Nies, Erik</au><au>Lemaur, Vincent</au><au>Beljonne, David</au><au>Salleo, Alberto</au><au>Lutsen, Laurence</au><au>Vandewal, Koen</au><au>Van Mele, Bruno</au><au>Costantini, Giovanni</au><au>Van den Brande, Niko</au><au>Maes, Wouter</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform excellently in the envisaged applications, which raises the question if one should really care about these imperfections. This article looks at the relevance of chemical precision (and lack thereof) in conjugated polymers covering the entire spectrum from the molecular scale, to the micro and mesostructure, up to the device level. The different types of polymerization errors for the alkoxylated variant of the benchmark (semi)crystalline polymer poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTT) are identified, visualized, and quantified and a general strategy to avoid homocoupling is introduced. Through a combination of experiments and supported by simulations, it is shown that these coupling defects hinder fullerene intercalation and limit device performance as compared to the homocoupling‐free analog. This clearly demonstrates that structural defects do matter and should be generally avoided, in particular when the geometrical regularity of the polymer is essential. These insights likely go beyond the specific PBTTT derivatives studied here and are of general relevance for the wider organic electronics field. The relevance of careful molecular engineering of alternating conjugated polymers—for the solid‐state microstructure up to bulk (blend) material and device properties—is demonstrated here. Homocoupling defects are quantified by scanning tunneling microscopy, while rapid‐heat cool calorimetry and temperature‐resolved X‐ray diffraction analyses are combined to elucidate their effect on polymer/blend crystallinity, showing that structural defects do matter for organic electronics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202309403</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8445-4509</orcidid><orcidid>https://orcid.org/0000-0001-7059-0155</orcidid><orcidid>https://orcid.org/0000-0001-9819-4349</orcidid><orcidid>https://orcid.org/0000-0001-5471-383X</orcidid><orcidid>https://orcid.org/0000-0003-2034-636X</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0001-7883-3393</orcidid><orcidid>https://orcid.org/0000-0002-4046-3582</orcidid><orcidid>https://orcid.org/0000-0002-0807-5790</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000-0002-4404-9573</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0001-8601-286X</orcidid><orcidid>https://orcid.org/0000-0001-7916-3440</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0003-4498-6820</orcidid><orcidid>https://orcid.org/0000-0002-3576-0945</orcidid><orcidid>https://orcid.org/0000-0002-5324-6261</orcidid><orcidid>https://orcid.org/0000-0003-1787-1091</orcidid><orcidid>https://orcid.org/0000000198194349</orcidid><orcidid>https://orcid.org/0000000208075790</orcidid><orcidid>https://orcid.org/0000000253246261</orcidid><orcidid>https://orcid.org/000000032034636X</orcidid><orcidid>https://orcid.org/0000000244049573</orcidid><orcidid>https://orcid.org/0000000240463582</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000270943501</orcidid><orcidid>https://orcid.org/0000000170590155</orcidid><orcidid>https://orcid.org/0000000235760945</orcidid><orcidid>https://orcid.org/0000000179163440</orcidid><orcidid>https://orcid.org/000000015471383X</orcidid><orcidid>https://orcid.org/0000000150829990</orcidid><orcidid>https://orcid.org/0000000178833393</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid><orcidid>https://orcid.org/0000000344986820</orcidid><orcidid>https://orcid.org/000000018601286X</orcidid><orcidid>https://orcid.org/0000000317871091</orcidid><orcidid>https://orcid.org/0000000184454509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-12, Vol.33 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1999267
source Wiley-Blackwell Journals
subjects Cross coupling
Crystal defects
Electronics
fullerene co-crystals
Fullerenes
homocoupling
Intercalation
intermolecular charge-transfer absorption
Materials science
polymer
polymer:fullerene co‐crystals
Polymerization
Polymers
Stille cross-coupling
structural defect quantification
title On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Importance%20of%20Chemical%20Precision%20in%20Organic%20Electronics:%20Fullerene%20Intercalation%20in%20Perfectly%20Alternating%20Conjugated%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Vanderspikken,%20Jochen&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-12-01&rft.volume=33&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202309403&rft_dat=%3Cproquest_osti_%3E2904816058%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904816058&rft_id=info:pmid/&rfr_iscdi=true