Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg
The electric E 1 and magnetic M 1 dipole responses of the $$N=Z$$ N = Z nucleus $$^{24}$$ 24 Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the $$^{24}$$ 24 Mg( $$\gamma ,...
Gespeichert in:
Veröffentlicht in: | The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2023-09, Vol.59 (9), Article 198 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | The European physical journal. A, Hadrons and nuclei |
container_volume | 59 |
creator | Deary, J. Scheck, M. Schwengner, R. O’Donnell, D. Bemmerer, D. Beyer, R. Hensel, Th Junghans, A. R. Kögler, T. Müller, S. E. Römer, K. Schmidt, K. Turkat, S. Urlaß, S. Wagner, A. Bowry, M. Adsley, P. Agar, O. Chapman, R. Crespi, F. C. L. Doherty, D. T. Gayer, U. Friman Herzberg, R.-D. Isaak, J. Janssens, R. V. F. Kröll, T. Löher, B. Nara Singh, B. S. von Neumann-Cosel, P. Pellegri, L. Peters, E. E. Rainovski, G. Savran, D. Smith, J. F. Spieker, M. Thirolf, P. G. Triambak, S. Tornow, W. Venhart, M. Wiedeking, M. Wieland, O. Yates, S. W. Zilges, A. |
description | The electric
E
1 and magnetic
M
1 dipole responses of the
$$N=Z$$
N
=
Z
nucleus
$$^{24}$$
24
Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the
$$^{24}$$
24
Mg(
$$\gamma ,\gamma ^{\prime }$$
γ
,
γ
′
) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one
$$J^{\pi }=1^-$$
J
π
=
1
-
, four
$$J^{\pi }=1^+$$
J
π
=
1
+
, and six
$$J^{\pi }=2^+$$
J
π
=
2
+
states in
$$^{24}$$
24
Mg. De-excitation
$$\gamma $$
γ
rays were detected using the four high-purity germanium detectors of the
$$\gamma $$
γ
ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total
$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$
B
(
M
1
)
↑
=
2.7
(
3
)
μ
N
2
is observed, but this
$$N=Z$$
N
=
Z
nucleus exhibits only marginal
E
1 strength of less than
$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$
∑
B
(
E
1
)
↑
≤
0.61
×
10
-
3
e
$$^2 \, $$
2
fm
$$^2$$
2
. The
$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$
B
(
Π
1
,
1
i
π
→
2
1
+
)
/
B
(
Π
1
,
1
i
π
→
0
gs
+
)
branching ratios in combination with the expected results from the Alaga rules demonstrate that
K
is a good approximative quantum number for
$$^{24}$$
24
Mg. The use of the known
$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$
ρ
2
(
E
0
,
0
2
+
→
0
gs
+
)
strength and the measured
$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$
B
(
M
1
,
1
+
→
0
2
+
)
/
B
(
M
1
,
1
+
→
0
gs
+
)
branching ratio of the 10.712 MeV
$$1^+$$
1
+
level allows, in a two-state mixing model, an extraction of the difference
$$\varDelta \beta _2^2$$
Δ
β
2
2
between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV
$$0^+_2$$
0
2
+
level. |
doi_str_mv | 10.1140/epja/s10050-023-01111-7 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1998613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1140_epja_s10050_023_01111_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2487-4656313495611dc2cc18cd06d80157b5514cf8e57be910c6329e9d8d0a2e14f73</originalsourceid><addsrcrecordid>eNpN0E1Lw0AQBuBFFKzV32CQXNfO7G422YMHKX5B_TgoiAeXOJmYlpot2fQg4n83tR6cy7wDL3N4hDhGOEU0MOHVopxEBMhAgtIScBiZ74gRGm2kBXze_Zf3xUGMCwAwytmRwIcm9EF2HFehjZyEOukbTtL07uwlTZN2TUtex-F-_VLmO01v3w_FXl0uIx_97bF4urx4nF7L2f3VzfR8JkmZIpfGZlajNi6ziBUpIiyoAlsVgFn-lmVoqC54iOwQyGrl2FVFBaViNHWux-Jk-zfEfu4jzXumhkLbMvUenSss6qGUb0vUhRg7rv2qm3-U3adH8Bsev-HxWx4_8PhfHp_rH4J3Vag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg</title><source>SpringerLink Journals</source><creator>Deary, J. ; Scheck, M. ; Schwengner, R. ; O’Donnell, D. ; Bemmerer, D. ; Beyer, R. ; Hensel, Th ; Junghans, A. R. ; Kögler, T. ; Müller, S. E. ; Römer, K. ; Schmidt, K. ; Turkat, S. ; Urlaß, S. ; Wagner, A. ; Bowry, M. ; Adsley, P. ; Agar, O. ; Chapman, R. ; Crespi, F. C. L. ; Doherty, D. T. ; Gayer, U. Friman ; Herzberg, R.-D. ; Isaak, J. ; Janssens, R. V. F. ; Kröll, T. ; Löher, B. ; Nara Singh, B. S. ; von Neumann-Cosel, P. ; Pellegri, L. ; Peters, E. E. ; Rainovski, G. ; Savran, D. ; Smith, J. F. ; Spieker, M. ; Thirolf, P. G. ; Triambak, S. ; Tornow, W. ; Venhart, M. ; Wiedeking, M. ; Wieland, O. ; Yates, S. W. ; Zilges, A.</creator><creatorcontrib>Deary, J. ; Scheck, M. ; Schwengner, R. ; O’Donnell, D. ; Bemmerer, D. ; Beyer, R. ; Hensel, Th ; Junghans, A. R. ; Kögler, T. ; Müller, S. E. ; Römer, K. ; Schmidt, K. ; Turkat, S. ; Urlaß, S. ; Wagner, A. ; Bowry, M. ; Adsley, P. ; Agar, O. ; Chapman, R. ; Crespi, F. C. L. ; Doherty, D. T. ; Gayer, U. Friman ; Herzberg, R.-D. ; Isaak, J. ; Janssens, R. V. F. ; Kröll, T. ; Löher, B. ; Nara Singh, B. S. ; von Neumann-Cosel, P. ; Pellegri, L. ; Peters, E. E. ; Rainovski, G. ; Savran, D. ; Smith, J. F. ; Spieker, M. ; Thirolf, P. G. ; Triambak, S. ; Tornow, W. ; Venhart, M. ; Wiedeking, M. ; Wieland, O. ; Yates, S. W. ; Zilges, A. ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>The electric
E
1 and magnetic
M
1 dipole responses of the
$$N=Z$$
N
=
Z
nucleus
$$^{24}$$
24
Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the
$$^{24}$$
24
Mg(
$$\gamma ,\gamma ^{\prime }$$
γ
,
γ
′
) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one
$$J^{\pi }=1^-$$
J
π
=
1
-
, four
$$J^{\pi }=1^+$$
J
π
=
1
+
, and six
$$J^{\pi }=2^+$$
J
π
=
2
+
states in
$$^{24}$$
24
Mg. De-excitation
$$\gamma $$
γ
rays were detected using the four high-purity germanium detectors of the
$$\gamma $$
γ
ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total
$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$
B
(
M
1
)
↑
=
2.7
(
3
)
μ
N
2
is observed, but this
$$N=Z$$
N
=
Z
nucleus exhibits only marginal
E
1 strength of less than
$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$
∑
B
(
E
1
)
↑
≤
0.61
×
10
-
3
e
$$^2 \, $$
2
fm
$$^2$$
2
. The
$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$
B
(
Π
1
,
1
i
π
→
2
1
+
)
/
B
(
Π
1
,
1
i
π
→
0
gs
+
)
branching ratios in combination with the expected results from the Alaga rules demonstrate that
K
is a good approximative quantum number for
$$^{24}$$
24
Mg. The use of the known
$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$
ρ
2
(
E
0
,
0
2
+
→
0
gs
+
)
strength and the measured
$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$
B
(
M
1
,
1
+
→
0
2
+
)
/
B
(
M
1
,
1
+
→
0
gs
+
)
branching ratio of the 10.712 MeV
$$1^+$$
1
+
level allows, in a two-state mixing model, an extraction of the difference
$$\varDelta \beta _2^2$$
Δ
β
2
2
between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV
$$0^+_2$$
0
2
+
level.</description><identifier>ISSN: 1434-601X</identifier><identifier>EISSN: 1434-601X</identifier><identifier>DOI: 10.1140/epja/s10050-023-01111-7</identifier><language>eng</language><publisher>United States: Springer Nature</publisher><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><ispartof>The European physical journal. A, Hadrons and nuclei, 2023-09, Vol.59 (9), Article 198</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2487-4656313495611dc2cc18cd06d80157b5514cf8e57be910c6329e9d8d0a2e14f73</citedby><cites>FETCH-LOGICAL-c2487-4656313495611dc2cc18cd06d80157b5514cf8e57be910c6329e9d8d0a2e14f73</cites><orcidid>0000-0002-9624-3909 ; 0000000296243909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1998613$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Deary, J.</creatorcontrib><creatorcontrib>Scheck, M.</creatorcontrib><creatorcontrib>Schwengner, R.</creatorcontrib><creatorcontrib>O’Donnell, D.</creatorcontrib><creatorcontrib>Bemmerer, D.</creatorcontrib><creatorcontrib>Beyer, R.</creatorcontrib><creatorcontrib>Hensel, Th</creatorcontrib><creatorcontrib>Junghans, A. R.</creatorcontrib><creatorcontrib>Kögler, T.</creatorcontrib><creatorcontrib>Müller, S. E.</creatorcontrib><creatorcontrib>Römer, K.</creatorcontrib><creatorcontrib>Schmidt, K.</creatorcontrib><creatorcontrib>Turkat, S.</creatorcontrib><creatorcontrib>Urlaß, S.</creatorcontrib><creatorcontrib>Wagner, A.</creatorcontrib><creatorcontrib>Bowry, M.</creatorcontrib><creatorcontrib>Adsley, P.</creatorcontrib><creatorcontrib>Agar, O.</creatorcontrib><creatorcontrib>Chapman, R.</creatorcontrib><creatorcontrib>Crespi, F. C. L.</creatorcontrib><creatorcontrib>Doherty, D. T.</creatorcontrib><creatorcontrib>Gayer, U. Friman</creatorcontrib><creatorcontrib>Herzberg, R.-D.</creatorcontrib><creatorcontrib>Isaak, J.</creatorcontrib><creatorcontrib>Janssens, R. V. F.</creatorcontrib><creatorcontrib>Kröll, T.</creatorcontrib><creatorcontrib>Löher, B.</creatorcontrib><creatorcontrib>Nara Singh, B. S.</creatorcontrib><creatorcontrib>von Neumann-Cosel, P.</creatorcontrib><creatorcontrib>Pellegri, L.</creatorcontrib><creatorcontrib>Peters, E. E.</creatorcontrib><creatorcontrib>Rainovski, G.</creatorcontrib><creatorcontrib>Savran, D.</creatorcontrib><creatorcontrib>Smith, J. F.</creatorcontrib><creatorcontrib>Spieker, M.</creatorcontrib><creatorcontrib>Thirolf, P. G.</creatorcontrib><creatorcontrib>Triambak, S.</creatorcontrib><creatorcontrib>Tornow, W.</creatorcontrib><creatorcontrib>Venhart, M.</creatorcontrib><creatorcontrib>Wiedeking, M.</creatorcontrib><creatorcontrib>Wieland, O.</creatorcontrib><creatorcontrib>Yates, S. W.</creatorcontrib><creatorcontrib>Zilges, A.</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg</title><title>The European physical journal. A, Hadrons and nuclei</title><description>The electric
E
1 and magnetic
M
1 dipole responses of the
$$N=Z$$
N
=
Z
nucleus
$$^{24}$$
24
Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the
$$^{24}$$
24
Mg(
$$\gamma ,\gamma ^{\prime }$$
γ
,
γ
′
) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one
$$J^{\pi }=1^-$$
J
π
=
1
-
, four
$$J^{\pi }=1^+$$
J
π
=
1
+
, and six
$$J^{\pi }=2^+$$
J
π
=
2
+
states in
$$^{24}$$
24
Mg. De-excitation
$$\gamma $$
γ
rays were detected using the four high-purity germanium detectors of the
$$\gamma $$
γ
ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total
$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$
B
(
M
1
)
↑
=
2.7
(
3
)
μ
N
2
is observed, but this
$$N=Z$$
N
=
Z
nucleus exhibits only marginal
E
1 strength of less than
$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$
∑
B
(
E
1
)
↑
≤
0.61
×
10
-
3
e
$$^2 \, $$
2
fm
$$^2$$
2
. The
$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$
B
(
Π
1
,
1
i
π
→
2
1
+
)
/
B
(
Π
1
,
1
i
π
→
0
gs
+
)
branching ratios in combination with the expected results from the Alaga rules demonstrate that
K
is a good approximative quantum number for
$$^{24}$$
24
Mg. The use of the known
$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$
ρ
2
(
E
0
,
0
2
+
→
0
gs
+
)
strength and the measured
$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$
B
(
M
1
,
1
+
→
0
2
+
)
/
B
(
M
1
,
1
+
→
0
gs
+
)
branching ratio of the 10.712 MeV
$$1^+$$
1
+
level allows, in a two-state mixing model, an extraction of the difference
$$\varDelta \beta _2^2$$
Δ
β
2
2
between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV
$$0^+_2$$
0
2
+
level.</description><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><issn>1434-601X</issn><issn>1434-601X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0E1Lw0AQBuBFFKzV32CQXNfO7G422YMHKX5B_TgoiAeXOJmYlpot2fQg4n83tR6cy7wDL3N4hDhGOEU0MOHVopxEBMhAgtIScBiZ74gRGm2kBXze_Zf3xUGMCwAwytmRwIcm9EF2HFehjZyEOukbTtL07uwlTZN2TUtex-F-_VLmO01v3w_FXl0uIx_97bF4urx4nF7L2f3VzfR8JkmZIpfGZlajNi6ziBUpIiyoAlsVgFn-lmVoqC54iOwQyGrl2FVFBaViNHWux-Jk-zfEfu4jzXumhkLbMvUenSss6qGUb0vUhRg7rv2qm3-U3adH8Bsev-HxWx4_8PhfHp_rH4J3Vag</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Deary, J.</creator><creator>Scheck, M.</creator><creator>Schwengner, R.</creator><creator>O’Donnell, D.</creator><creator>Bemmerer, D.</creator><creator>Beyer, R.</creator><creator>Hensel, Th</creator><creator>Junghans, A. R.</creator><creator>Kögler, T.</creator><creator>Müller, S. E.</creator><creator>Römer, K.</creator><creator>Schmidt, K.</creator><creator>Turkat, S.</creator><creator>Urlaß, S.</creator><creator>Wagner, A.</creator><creator>Bowry, M.</creator><creator>Adsley, P.</creator><creator>Agar, O.</creator><creator>Chapman, R.</creator><creator>Crespi, F. C. L.</creator><creator>Doherty, D. T.</creator><creator>Gayer, U. Friman</creator><creator>Herzberg, R.-D.</creator><creator>Isaak, J.</creator><creator>Janssens, R. V. F.</creator><creator>Kröll, T.</creator><creator>Löher, B.</creator><creator>Nara Singh, B. S.</creator><creator>von Neumann-Cosel, P.</creator><creator>Pellegri, L.</creator><creator>Peters, E. E.</creator><creator>Rainovski, G.</creator><creator>Savran, D.</creator><creator>Smith, J. F.</creator><creator>Spieker, M.</creator><creator>Thirolf, P. G.</creator><creator>Triambak, S.</creator><creator>Tornow, W.</creator><creator>Venhart, M.</creator><creator>Wiedeking, M.</creator><creator>Wieland, O.</creator><creator>Yates, S. W.</creator><creator>Zilges, A.</creator><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9624-3909</orcidid><orcidid>https://orcid.org/0000000296243909</orcidid></search><sort><creationdate>20230907</creationdate><title>Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg</title><author>Deary, J. ; Scheck, M. ; Schwengner, R. ; O’Donnell, D. ; Bemmerer, D. ; Beyer, R. ; Hensel, Th ; Junghans, A. R. ; Kögler, T. ; Müller, S. E. ; Römer, K. ; Schmidt, K. ; Turkat, S. ; Urlaß, S. ; Wagner, A. ; Bowry, M. ; Adsley, P. ; Agar, O. ; Chapman, R. ; Crespi, F. C. L. ; Doherty, D. T. ; Gayer, U. Friman ; Herzberg, R.-D. ; Isaak, J. ; Janssens, R. V. F. ; Kröll, T. ; Löher, B. ; Nara Singh, B. S. ; von Neumann-Cosel, P. ; Pellegri, L. ; Peters, E. E. ; Rainovski, G. ; Savran, D. ; Smith, J. F. ; Spieker, M. ; Thirolf, P. G. ; Triambak, S. ; Tornow, W. ; Venhart, M. ; Wiedeking, M. ; Wieland, O. ; Yates, S. W. ; Zilges, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2487-4656313495611dc2cc18cd06d80157b5514cf8e57be910c6329e9d8d0a2e14f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deary, J.</creatorcontrib><creatorcontrib>Scheck, M.</creatorcontrib><creatorcontrib>Schwengner, R.</creatorcontrib><creatorcontrib>O’Donnell, D.</creatorcontrib><creatorcontrib>Bemmerer, D.</creatorcontrib><creatorcontrib>Beyer, R.</creatorcontrib><creatorcontrib>Hensel, Th</creatorcontrib><creatorcontrib>Junghans, A. R.</creatorcontrib><creatorcontrib>Kögler, T.</creatorcontrib><creatorcontrib>Müller, S. E.</creatorcontrib><creatorcontrib>Römer, K.</creatorcontrib><creatorcontrib>Schmidt, K.</creatorcontrib><creatorcontrib>Turkat, S.</creatorcontrib><creatorcontrib>Urlaß, S.</creatorcontrib><creatorcontrib>Wagner, A.</creatorcontrib><creatorcontrib>Bowry, M.</creatorcontrib><creatorcontrib>Adsley, P.</creatorcontrib><creatorcontrib>Agar, O.</creatorcontrib><creatorcontrib>Chapman, R.</creatorcontrib><creatorcontrib>Crespi, F. C. L.</creatorcontrib><creatorcontrib>Doherty, D. T.</creatorcontrib><creatorcontrib>Gayer, U. Friman</creatorcontrib><creatorcontrib>Herzberg, R.-D.</creatorcontrib><creatorcontrib>Isaak, J.</creatorcontrib><creatorcontrib>Janssens, R. V. F.</creatorcontrib><creatorcontrib>Kröll, T.</creatorcontrib><creatorcontrib>Löher, B.</creatorcontrib><creatorcontrib>Nara Singh, B. S.</creatorcontrib><creatorcontrib>von Neumann-Cosel, P.</creatorcontrib><creatorcontrib>Pellegri, L.</creatorcontrib><creatorcontrib>Peters, E. E.</creatorcontrib><creatorcontrib>Rainovski, G.</creatorcontrib><creatorcontrib>Savran, D.</creatorcontrib><creatorcontrib>Smith, J. F.</creatorcontrib><creatorcontrib>Spieker, M.</creatorcontrib><creatorcontrib>Thirolf, P. G.</creatorcontrib><creatorcontrib>Triambak, S.</creatorcontrib><creatorcontrib>Tornow, W.</creatorcontrib><creatorcontrib>Venhart, M.</creatorcontrib><creatorcontrib>Wiedeking, M.</creatorcontrib><creatorcontrib>Wieland, O.</creatorcontrib><creatorcontrib>Yates, S. W.</creatorcontrib><creatorcontrib>Zilges, A.</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deary, J.</au><au>Scheck, M.</au><au>Schwengner, R.</au><au>O’Donnell, D.</au><au>Bemmerer, D.</au><au>Beyer, R.</au><au>Hensel, Th</au><au>Junghans, A. R.</au><au>Kögler, T.</au><au>Müller, S. E.</au><au>Römer, K.</au><au>Schmidt, K.</au><au>Turkat, S.</au><au>Urlaß, S.</au><au>Wagner, A.</au><au>Bowry, M.</au><au>Adsley, P.</au><au>Agar, O.</au><au>Chapman, R.</au><au>Crespi, F. C. L.</au><au>Doherty, D. T.</au><au>Gayer, U. Friman</au><au>Herzberg, R.-D.</au><au>Isaak, J.</au><au>Janssens, R. V. F.</au><au>Kröll, T.</au><au>Löher, B.</au><au>Nara Singh, B. S.</au><au>von Neumann-Cosel, P.</au><au>Pellegri, L.</au><au>Peters, E. E.</au><au>Rainovski, G.</au><au>Savran, D.</au><au>Smith, J. F.</au><au>Spieker, M.</au><au>Thirolf, P. G.</au><au>Triambak, S.</au><au>Tornow, W.</au><au>Venhart, M.</au><au>Wiedeking, M.</au><au>Wieland, O.</au><au>Yates, S. W.</au><au>Zilges, A.</au><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg</atitle><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle><date>2023-09-07</date><risdate>2023</risdate><volume>59</volume><issue>9</issue><artnum>198</artnum><issn>1434-601X</issn><eissn>1434-601X</eissn><abstract>The electric
E
1 and magnetic
M
1 dipole responses of the
$$N=Z$$
N
=
Z
nucleus
$$^{24}$$
24
Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the
$$^{24}$$
24
Mg(
$$\gamma ,\gamma ^{\prime }$$
γ
,
γ
′
) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one
$$J^{\pi }=1^-$$
J
π
=
1
-
, four
$$J^{\pi }=1^+$$
J
π
=
1
+
, and six
$$J^{\pi }=2^+$$
J
π
=
2
+
states in
$$^{24}$$
24
Mg. De-excitation
$$\gamma $$
γ
rays were detected using the four high-purity germanium detectors of the
$$\gamma $$
γ
ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total
$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$
B
(
M
1
)
↑
=
2.7
(
3
)
μ
N
2
is observed, but this
$$N=Z$$
N
=
Z
nucleus exhibits only marginal
E
1 strength of less than
$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$
∑
B
(
E
1
)
↑
≤
0.61
×
10
-
3
e
$$^2 \, $$
2
fm
$$^2$$
2
. The
$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$
B
(
Π
1
,
1
i
π
→
2
1
+
)
/
B
(
Π
1
,
1
i
π
→
0
gs
+
)
branching ratios in combination with the expected results from the Alaga rules demonstrate that
K
is a good approximative quantum number for
$$^{24}$$
24
Mg. The use of the known
$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$
ρ
2
(
E
0
,
0
2
+
→
0
gs
+
)
strength and the measured
$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$
B
(
M
1
,
1
+
→
0
2
+
)
/
B
(
M
1
,
1
+
→
0
gs
+
)
branching ratio of the 10.712 MeV
$$1^+$$
1
+
level allows, in a two-state mixing model, an extraction of the difference
$$\varDelta \beta _2^2$$
Δ
β
2
2
between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV
$$0^+_2$$
0
2
+
level.</abstract><cop>United States</cop><pub>Springer Nature</pub><doi>10.1140/epja/s10050-023-01111-7</doi><orcidid>https://orcid.org/0000-0002-9624-3909</orcidid><orcidid>https://orcid.org/0000000296243909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-601X |
ispartof | The European physical journal. A, Hadrons and nuclei, 2023-09, Vol.59 (9), Article 198 |
issn | 1434-601X 1434-601X |
language | eng |
recordid | cdi_osti_scitechconnect_1998613 |
source | SpringerLink Journals |
subjects | NUCLEAR PHYSICS AND RADIATION PHYSICS |
title | Photo-response of the $$N=Z$$ nucleus $$^{24}$$Mg |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-response%20of%20the%20$$N=Z$$%20nucleus%20$$%5E%7B24%7D$$Mg&rft.jtitle=The%20European%20physical%20journal.%20A,%20Hadrons%20and%20nuclei&rft.au=Deary,%20J.&rft.aucorp=University%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2023-09-07&rft.volume=59&rft.issue=9&rft.artnum=198&rft.issn=1434-601X&rft.eissn=1434-601X&rft_id=info:doi/10.1140/epja/s10050-023-01111-7&rft_dat=%3Ccrossref_osti_%3E10_1140_epja_s10050_023_01111_7%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |