Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-11, Vol.56 (22), p.15718-15727
Hauptverfasser: Sowers, Tyler D., Blackmon, Matthew D., Bone, Sharon E., Kirby, Alicia M., Jerden, Marissa L., Noerpel, Matthew R., Scheckel, Kirk G., Bradham, Karen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15727
container_issue 22
container_start_page 15718
container_title Environmental science & technology
container_volume 56
creator Sowers, Tyler D.
Blackmon, Matthew D.
Bone, Sharon E.
Kirby, Alicia M.
Jerden, Marissa L.
Noerpel, Matthew R.
Scheckel, Kirk G.
Bradham, Karen D.
description Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of 70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (
doi_str_mv 10.1021/acs.est.2c05606
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1997958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738229393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</originalsourceid><addsrcrecordid>eNp1kc1uGyEUhVHVKnHTrLurULusxrmAZwzL1MpfZSmWkkjdIWCgxZoZXGAS5QHy3sGxk11WV-J-53DgIPSVwJQAJSfKpKlNeUoN1A00H9CE1BSqmtfkI5oAEFYJ1vw5RJ9TWgMAZcAP0CFrKBNA-QQ93YzG2JTc2OFFGO5tTD4MODi80lU5yKr3g8q2xTfBdwnngJfhofrlg3rRee07nx_xqht7HdYqhuSzxXfJD3_xKmRVkLGvfr8uVManvfZ2yPjW9hsbVR6j_YI-OdUle7yfR-ju_Ox2cVktry-uFqfLSjHOczXTNTVNS2qnXM05nbHGcQpMQzvXxDV65gpBKWOiNYLxVrkGWi6AEU3nirIj9H3nG1L2MpmSyPwzYRisyZIIMRc1L9CPHbSJ4f9YfleuwxiHkkvSOeOUCiZYoU52lCkvS9E6uYm-V_FREpDbbmTpRm7V-26K4tved9S9bd_41zIK8HMHbJVvd75n9wxSE5u8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738229393</pqid></control><display><type>article</type><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><source>MEDLINE</source><source>ACS Publications</source><creator>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D.</creator><creatorcontrib>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D. ; SLAC</creatorcontrib><description>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of &lt;1%, compared to original soils possessing bioaccessibility of &gt;70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (&lt;10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c05606</identifier><identifier>PMID: 36239028</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption spectroscopy ; Ambient temperature ; Bioavailability ; Biological Availability ; Cations ; Contaminants ; Contaminants in Aquatic and Terrestrial Environments ; Conversion ; High temperature ; Impurities ; Interlayers ; Jarosite ; Lead ; Lead - analysis ; Minerals ; Minerals - chemistry ; Phase transitions ; Potassium ; Potassium - analysis ; Room temperature ; Soil - chemistry ; Soil conditions ; Soil contamination ; Soil Pollutants - chemistry ; Soil pollution ; Soil remediation ; Soil temperature ; Soil testing ; Soils ; Temperature ; X ray absorption ; X-ray absorption spectroscopy ; X-ray fluorescence</subject><ispartof>Environmental science &amp; technology, 2022-11, Vol.56 (22), p.15718-15727</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</citedby><cites>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</cites><orcidid>0000-0001-6841-366X ; 0000-0001-8033-8033 ; 0000-0001-8515-847X ; 0000-0002-7521-9627 ; 0000000275219627 ; 000000018515847X ; 000000016841366X ; 0000000180338033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c05606$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c05606$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36239028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1997958$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowers, Tyler D.</creatorcontrib><creatorcontrib>Blackmon, Matthew D.</creatorcontrib><creatorcontrib>Bone, Sharon E.</creatorcontrib><creatorcontrib>Kirby, Alicia M.</creatorcontrib><creatorcontrib>Jerden, Marissa L.</creatorcontrib><creatorcontrib>Noerpel, Matthew R.</creatorcontrib><creatorcontrib>Scheckel, Kirk G.</creatorcontrib><creatorcontrib>Bradham, Karen D.</creatorcontrib><creatorcontrib>SLAC</creatorcontrib><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of &lt;1%, compared to original soils possessing bioaccessibility of &gt;70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (&lt;10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</description><subject>Absorption spectroscopy</subject><subject>Ambient temperature</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Cations</subject><subject>Contaminants</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Conversion</subject><subject>High temperature</subject><subject>Impurities</subject><subject>Interlayers</subject><subject>Jarosite</subject><subject>Lead</subject><subject>Lead - analysis</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>Phase transitions</subject><subject>Potassium</subject><subject>Potassium - analysis</subject><subject>Room temperature</subject><subject>Soil - chemistry</subject><subject>Soil conditions</subject><subject>Soil contamination</subject><subject>Soil Pollutants - chemistry</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Soil temperature</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Temperature</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray fluorescence</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uGyEUhVHVKnHTrLurULusxrmAZwzL1MpfZSmWkkjdIWCgxZoZXGAS5QHy3sGxk11WV-J-53DgIPSVwJQAJSfKpKlNeUoN1A00H9CE1BSqmtfkI5oAEFYJ1vw5RJ9TWgMAZcAP0CFrKBNA-QQ93YzG2JTc2OFFGO5tTD4MODi80lU5yKr3g8q2xTfBdwnngJfhofrlg3rRee07nx_xqht7HdYqhuSzxXfJD3_xKmRVkLGvfr8uVManvfZ2yPjW9hsbVR6j_YI-OdUle7yfR-ju_Ox2cVktry-uFqfLSjHOczXTNTVNS2qnXM05nbHGcQpMQzvXxDV65gpBKWOiNYLxVrkGWi6AEU3nirIj9H3nG1L2MpmSyPwzYRisyZIIMRc1L9CPHbSJ4f9YfleuwxiHkkvSOeOUCiZYoU52lCkvS9E6uYm-V_FREpDbbmTpRm7V-26K4tved9S9bd_41zIK8HMHbJVvd75n9wxSE5u8</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Sowers, Tyler D.</creator><creator>Blackmon, Matthew D.</creator><creator>Bone, Sharon E.</creator><creator>Kirby, Alicia M.</creator><creator>Jerden, Marissa L.</creator><creator>Noerpel, Matthew R.</creator><creator>Scheckel, Kirk G.</creator><creator>Bradham, Karen D.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6841-366X</orcidid><orcidid>https://orcid.org/0000-0001-8033-8033</orcidid><orcidid>https://orcid.org/0000-0001-8515-847X</orcidid><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000000275219627</orcidid><orcidid>https://orcid.org/000000018515847X</orcidid><orcidid>https://orcid.org/000000016841366X</orcidid><orcidid>https://orcid.org/0000000180338033</orcidid></search><sort><creationdate>20221115</creationdate><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><author>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>Ambient temperature</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Cations</topic><topic>Contaminants</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Conversion</topic><topic>High temperature</topic><topic>Impurities</topic><topic>Interlayers</topic><topic>Jarosite</topic><topic>Lead</topic><topic>Lead - analysis</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>Phase transitions</topic><topic>Potassium</topic><topic>Potassium - analysis</topic><topic>Room temperature</topic><topic>Soil - chemistry</topic><topic>Soil conditions</topic><topic>Soil contamination</topic><topic>Soil Pollutants - chemistry</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Soil temperature</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Temperature</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowers, Tyler D.</creatorcontrib><creatorcontrib>Blackmon, Matthew D.</creatorcontrib><creatorcontrib>Bone, Sharon E.</creatorcontrib><creatorcontrib>Kirby, Alicia M.</creatorcontrib><creatorcontrib>Jerden, Marissa L.</creatorcontrib><creatorcontrib>Noerpel, Matthew R.</creatorcontrib><creatorcontrib>Scheckel, Kirk G.</creatorcontrib><creatorcontrib>Bradham, Karen D.</creatorcontrib><creatorcontrib>SLAC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowers, Tyler D.</au><au>Blackmon, Matthew D.</au><au>Bone, Sharon E.</au><au>Kirby, Alicia M.</au><au>Jerden, Marissa L.</au><au>Noerpel, Matthew R.</au><au>Scheckel, Kirk G.</au><au>Bradham, Karen D.</au><aucorp>SLAC</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>56</volume><issue>22</issue><spage>15718</spage><epage>15727</epage><pages>15718-15727</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of &lt;1%, compared to original soils possessing bioaccessibility of &gt;70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (&lt;10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36239028</pmid><doi>10.1021/acs.est.2c05606</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6841-366X</orcidid><orcidid>https://orcid.org/0000-0001-8033-8033</orcidid><orcidid>https://orcid.org/0000-0001-8515-847X</orcidid><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000000275219627</orcidid><orcidid>https://orcid.org/000000018515847X</orcidid><orcidid>https://orcid.org/000000016841366X</orcidid><orcidid>https://orcid.org/0000000180338033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2022-11, Vol.56 (22), p.15718-15727
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1997958
source MEDLINE; ACS Publications
subjects Absorption spectroscopy
Ambient temperature
Bioavailability
Biological Availability
Cations
Contaminants
Contaminants in Aquatic and Terrestrial Environments
Conversion
High temperature
Impurities
Interlayers
Jarosite
Lead
Lead - analysis
Minerals
Minerals - chemistry
Phase transitions
Potassium
Potassium - analysis
Room temperature
Soil - chemistry
Soil conditions
Soil contamination
Soil Pollutants - chemistry
Soil pollution
Soil remediation
Soil temperature
Soil testing
Soils
Temperature
X ray absorption
X-ray absorption spectroscopy
X-ray fluorescence
title Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successful%20Conversion%20of%20Pb-Contaminated%20Soils%20to%20Low-Bioaccessibility%20Plumbojarosite%20Using%20Potassium-Jarosite%20at%20Ambient%20Temperature&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sowers,%20Tyler%20D.&rft.aucorp=SLAC&rft.date=2022-11-15&rft.volume=56&rft.issue=22&rft.spage=15718&rft.epage=15727&rft.pages=15718-15727&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c05606&rft_dat=%3Cproquest_osti_%3E2738229393%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738229393&rft_id=info:pmid/36239028&rfr_iscdi=true