Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature
Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-11, Vol.56 (22), p.15718-15727 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15727 |
---|---|
container_issue | 22 |
container_start_page | 15718 |
container_title | Environmental science & technology |
container_volume | 56 |
creator | Sowers, Tyler D. Blackmon, Matthew D. Bone, Sharon E. Kirby, Alicia M. Jerden, Marissa L. Noerpel, Matthew R. Scheckel, Kirk G. Bradham, Karen D. |
description | Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of 70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility ( |
doi_str_mv | 10.1021/acs.est.2c05606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1997958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738229393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</originalsourceid><addsrcrecordid>eNp1kc1uGyEUhVHVKnHTrLurULusxrmAZwzL1MpfZSmWkkjdIWCgxZoZXGAS5QHy3sGxk11WV-J-53DgIPSVwJQAJSfKpKlNeUoN1A00H9CE1BSqmtfkI5oAEFYJ1vw5RJ9TWgMAZcAP0CFrKBNA-QQ93YzG2JTc2OFFGO5tTD4MODi80lU5yKr3g8q2xTfBdwnngJfhofrlg3rRee07nx_xqht7HdYqhuSzxXfJD3_xKmRVkLGvfr8uVManvfZ2yPjW9hsbVR6j_YI-OdUle7yfR-ju_Ox2cVktry-uFqfLSjHOczXTNTVNS2qnXM05nbHGcQpMQzvXxDV65gpBKWOiNYLxVrkGWi6AEU3nirIj9H3nG1L2MpmSyPwzYRisyZIIMRc1L9CPHbSJ4f9YfleuwxiHkkvSOeOUCiZYoU52lCkvS9E6uYm-V_FREpDbbmTpRm7V-26K4tved9S9bd_41zIK8HMHbJVvd75n9wxSE5u8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738229393</pqid></control><display><type>article</type><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><source>MEDLINE</source><source>ACS Publications</source><creator>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D.</creator><creatorcontrib>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D. ; SLAC</creatorcontrib><description>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c05606</identifier><identifier>PMID: 36239028</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption spectroscopy ; Ambient temperature ; Bioavailability ; Biological Availability ; Cations ; Contaminants ; Contaminants in Aquatic and Terrestrial Environments ; Conversion ; High temperature ; Impurities ; Interlayers ; Jarosite ; Lead ; Lead - analysis ; Minerals ; Minerals - chemistry ; Phase transitions ; Potassium ; Potassium - analysis ; Room temperature ; Soil - chemistry ; Soil conditions ; Soil contamination ; Soil Pollutants - chemistry ; Soil pollution ; Soil remediation ; Soil temperature ; Soil testing ; Soils ; Temperature ; X ray absorption ; X-ray absorption spectroscopy ; X-ray fluorescence</subject><ispartof>Environmental science & technology, 2022-11, Vol.56 (22), p.15718-15727</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</citedby><cites>FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</cites><orcidid>0000-0001-6841-366X ; 0000-0001-8033-8033 ; 0000-0001-8515-847X ; 0000-0002-7521-9627 ; 0000000275219627 ; 000000018515847X ; 000000016841366X ; 0000000180338033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c05606$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c05606$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36239028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1997958$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowers, Tyler D.</creatorcontrib><creatorcontrib>Blackmon, Matthew D.</creatorcontrib><creatorcontrib>Bone, Sharon E.</creatorcontrib><creatorcontrib>Kirby, Alicia M.</creatorcontrib><creatorcontrib>Jerden, Marissa L.</creatorcontrib><creatorcontrib>Noerpel, Matthew R.</creatorcontrib><creatorcontrib>Scheckel, Kirk G.</creatorcontrib><creatorcontrib>Bradham, Karen D.</creatorcontrib><creatorcontrib>SLAC</creatorcontrib><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</description><subject>Absorption spectroscopy</subject><subject>Ambient temperature</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Cations</subject><subject>Contaminants</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Conversion</subject><subject>High temperature</subject><subject>Impurities</subject><subject>Interlayers</subject><subject>Jarosite</subject><subject>Lead</subject><subject>Lead - analysis</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>Phase transitions</subject><subject>Potassium</subject><subject>Potassium - analysis</subject><subject>Room temperature</subject><subject>Soil - chemistry</subject><subject>Soil conditions</subject><subject>Soil contamination</subject><subject>Soil Pollutants - chemistry</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Soil temperature</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Temperature</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray fluorescence</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uGyEUhVHVKnHTrLurULusxrmAZwzL1MpfZSmWkkjdIWCgxZoZXGAS5QHy3sGxk11WV-J-53DgIPSVwJQAJSfKpKlNeUoN1A00H9CE1BSqmtfkI5oAEFYJ1vw5RJ9TWgMAZcAP0CFrKBNA-QQ93YzG2JTc2OFFGO5tTD4MODi80lU5yKr3g8q2xTfBdwnngJfhofrlg3rRee07nx_xqht7HdYqhuSzxXfJD3_xKmRVkLGvfr8uVManvfZ2yPjW9hsbVR6j_YI-OdUle7yfR-ju_Ox2cVktry-uFqfLSjHOczXTNTVNS2qnXM05nbHGcQpMQzvXxDV65gpBKWOiNYLxVrkGWi6AEU3nirIj9H3nG1L2MpmSyPwzYRisyZIIMRc1L9CPHbSJ4f9YfleuwxiHkkvSOeOUCiZYoU52lCkvS9E6uYm-V_FREpDbbmTpRm7V-26K4tved9S9bd_41zIK8HMHbJVvd75n9wxSE5u8</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Sowers, Tyler D.</creator><creator>Blackmon, Matthew D.</creator><creator>Bone, Sharon E.</creator><creator>Kirby, Alicia M.</creator><creator>Jerden, Marissa L.</creator><creator>Noerpel, Matthew R.</creator><creator>Scheckel, Kirk G.</creator><creator>Bradham, Karen D.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6841-366X</orcidid><orcidid>https://orcid.org/0000-0001-8033-8033</orcidid><orcidid>https://orcid.org/0000-0001-8515-847X</orcidid><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000000275219627</orcidid><orcidid>https://orcid.org/000000018515847X</orcidid><orcidid>https://orcid.org/000000016841366X</orcidid><orcidid>https://orcid.org/0000000180338033</orcidid></search><sort><creationdate>20221115</creationdate><title>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</title><author>Sowers, Tyler D. ; Blackmon, Matthew D. ; Bone, Sharon E. ; Kirby, Alicia M. ; Jerden, Marissa L. ; Noerpel, Matthew R. ; Scheckel, Kirk G. ; Bradham, Karen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-4b52c6d15faf5882436f8203b0d7b1f6b4fb5222339dc938daf60d89031b27a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>Ambient temperature</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Cations</topic><topic>Contaminants</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Conversion</topic><topic>High temperature</topic><topic>Impurities</topic><topic>Interlayers</topic><topic>Jarosite</topic><topic>Lead</topic><topic>Lead - analysis</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>Phase transitions</topic><topic>Potassium</topic><topic>Potassium - analysis</topic><topic>Room temperature</topic><topic>Soil - chemistry</topic><topic>Soil conditions</topic><topic>Soil contamination</topic><topic>Soil Pollutants - chemistry</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Soil temperature</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Temperature</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowers, Tyler D.</creatorcontrib><creatorcontrib>Blackmon, Matthew D.</creatorcontrib><creatorcontrib>Bone, Sharon E.</creatorcontrib><creatorcontrib>Kirby, Alicia M.</creatorcontrib><creatorcontrib>Jerden, Marissa L.</creatorcontrib><creatorcontrib>Noerpel, Matthew R.</creatorcontrib><creatorcontrib>Scheckel, Kirk G.</creatorcontrib><creatorcontrib>Bradham, Karen D.</creatorcontrib><creatorcontrib>SLAC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowers, Tyler D.</au><au>Blackmon, Matthew D.</au><au>Bone, Sharon E.</au><au>Kirby, Alicia M.</au><au>Jerden, Marissa L.</au><au>Noerpel, Matthew R.</au><au>Scheckel, Kirk G.</au><au>Bradham, Karen D.</au><aucorp>SLAC</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>56</volume><issue>22</issue><spage>15718</spage><epage>15727</epage><pages>15718-15727</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95–100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36239028</pmid><doi>10.1021/acs.est.2c05606</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6841-366X</orcidid><orcidid>https://orcid.org/0000-0001-8033-8033</orcidid><orcidid>https://orcid.org/0000-0001-8515-847X</orcidid><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000000275219627</orcidid><orcidid>https://orcid.org/000000018515847X</orcidid><orcidid>https://orcid.org/000000016841366X</orcidid><orcidid>https://orcid.org/0000000180338033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2022-11, Vol.56 (22), p.15718-15727 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1997958 |
source | MEDLINE; ACS Publications |
subjects | Absorption spectroscopy Ambient temperature Bioavailability Biological Availability Cations Contaminants Contaminants in Aquatic and Terrestrial Environments Conversion High temperature Impurities Interlayers Jarosite Lead Lead - analysis Minerals Minerals - chemistry Phase transitions Potassium Potassium - analysis Room temperature Soil - chemistry Soil conditions Soil contamination Soil Pollutants - chemistry Soil pollution Soil remediation Soil temperature Soil testing Soils Temperature X ray absorption X-ray absorption spectroscopy X-ray fluorescence |
title | Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successful%20Conversion%20of%20Pb-Contaminated%20Soils%20to%20Low-Bioaccessibility%20Plumbojarosite%20Using%20Potassium-Jarosite%20at%20Ambient%20Temperature&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sowers,%20Tyler%20D.&rft.aucorp=SLAC&rft.date=2022-11-15&rft.volume=56&rft.issue=22&rft.spage=15718&rft.epage=15727&rft.pages=15718-15727&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c05606&rft_dat=%3Cproquest_osti_%3E2738229393%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738229393&rft_id=info:pmid/36239028&rfr_iscdi=true |