Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory

Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-10, Vol.16 (10), p.4522-4529
Hauptverfasser: Almaraz, Rafael, Sayer, Thomas, Toole, Justin, Austin, Rachelle, Farah, Yusef, Trainor, Nicholas, Redwing, Joan M., Krummel, Amber, Montoya-Castillo, Andrés, Sambur, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4529
container_issue 10
container_start_page 4522
container_title Energy & environmental science
container_volume 16
creator Almaraz, Rafael
Sayer, Thomas
Toole, Justin
Austin, Rachelle
Farah, Yusef
Trainor, Nicholas
Redwing, Joan M.
Krummel, Amber
Montoya-Castillo, Andrés
Sambur, Justin
description Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the cooling rate. One could expect to tune the hot carrier extraction rate constant ( k ET ) via a Marcus–Gerischer relationship, where k ET depends exponentially on Δ G °′ (the standard driving force for interfacial electron transfer). Δ G °′ is defined as the energy level difference between a semiconductor's conduction/valence band (CB/VB) minima/maxima and the redox potential of reactant molecules in solution. A major challenge in the electrochemistry community is that conventional approaches to quantify Δ G °′ for bulk semiconductors ( e.g. , Mott–Schottky measurements) cannot be directly applied to ultrathin 2D electrodes. The specific problem is that enormous electronic bandgap changes (>0.5 eV) and CB/VB edge movement take place upon illuminating or applying a potential to a 2D semiconductor electrode. Here, we develop an in situ absorbance spectroscopy approach to quantify interfacial energetics of 2D semiconductor/electrolyte interfaces using a minimal many-body model. Our results show that band edge movement in monolayer MoS 2 is significant (0.2–0.5 eV) over a narrow range of applied potentials (0.2–0.3 V). Such large band edge shifts could change k ET by a factor of 10–100, which has important consequences for practical solar energy conversion applications. We discuss the current experimental and theoretical knowledge gaps that must be addressed to minimize the error in the proposed optical approach.
doi_str_mv 10.1039/D3EE01165H
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1997431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875328526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-35e9d8a3e54d1d2b60020c900632a439a4debe6aec138fcfa80aef1744af1f6d3</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxYMoWKsXP0HQm7CaP7vZzVHaaoWCCHpe0mTSprRJTbKHBT-8q614moH3e8MbHkLXlNxTwuXDlM9mhFJRzU_QiNZVWVQ1Ead_u5DsHF2ktCFEMFLLEfp665TPzvbOr7DzGaJV2qktBg9xBdnphIPFbIoT7JwO3nQ6h4hhCzrHYCDhLh28OLnc4bT_FY66Xg-ulGOPlTd4p3xfLIPpcV5DiP0lOrNqm-DqOMfo42n2PpkXi9fnl8njotCcsVzwCqRpFIeqNNSwpSCEES2HHzhTJZeqNLAEoUBT3lhtVUMUWFqXpbLUCsPH6OZwN6Ts2qRdBr0efvFDxpZKWZecDtDtAdrH8NlByu0mdNEPuVrW1BVnTcXEQN0dKB1DShFsu49up2LfUtL-VND-V8C_AS1Le7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875328526</pqid></control><display><type>article</type><title>Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Almaraz, Rafael ; Sayer, Thomas ; Toole, Justin ; Austin, Rachelle ; Farah, Yusef ; Trainor, Nicholas ; Redwing, Joan M. ; Krummel, Amber ; Montoya-Castillo, Andrés ; Sambur, Justin</creator><creatorcontrib>Almaraz, Rafael ; Sayer, Thomas ; Toole, Justin ; Austin, Rachelle ; Farah, Yusef ; Trainor, Nicholas ; Redwing, Joan M. ; Krummel, Amber ; Montoya-Castillo, Andrés ; Sambur, Justin</creatorcontrib><description>Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the cooling rate. One could expect to tune the hot carrier extraction rate constant ( k ET ) via a Marcus–Gerischer relationship, where k ET depends exponentially on Δ G °′ (the standard driving force for interfacial electron transfer). Δ G °′ is defined as the energy level difference between a semiconductor's conduction/valence band (CB/VB) minima/maxima and the redox potential of reactant molecules in solution. A major challenge in the electrochemistry community is that conventional approaches to quantify Δ G °′ for bulk semiconductors ( e.g. , Mott–Schottky measurements) cannot be directly applied to ultrathin 2D electrodes. The specific problem is that enormous electronic bandgap changes (&gt;0.5 eV) and CB/VB edge movement take place upon illuminating or applying a potential to a 2D semiconductor electrode. Here, we develop an in situ absorbance spectroscopy approach to quantify interfacial energetics of 2D semiconductor/electrolyte interfaces using a minimal many-body model. Our results show that band edge movement in monolayer MoS 2 is significant (0.2–0.5 eV) over a narrow range of applied potentials (0.2–0.3 V). Such large band edge shifts could change k ET by a factor of 10–100, which has important consequences for practical solar energy conversion applications. We discuss the current experimental and theoretical knowledge gaps that must be addressed to minimize the error in the proposed optical approach.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D3EE01165H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Conduction bands ; Cooling rate ; Electrochemistry ; Electrodes ; Electrolytic cells ; Electron transfer ; Energy conversion ; Energy efficiency ; Energy levels ; Molybdenum disulfide ; Photoelectrochemical devices ; Redox potential ; Solar energy ; Solar energy conversion ; Spectroscopy ; Valence band</subject><ispartof>Energy &amp; environmental science, 2023-10, Vol.16 (10), p.4522-4529</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-35e9d8a3e54d1d2b60020c900632a439a4debe6aec138fcfa80aef1744af1f6d3</citedby><cites>FETCH-LOGICAL-c322t-35e9d8a3e54d1d2b60020c900632a439a4debe6aec138fcfa80aef1744af1f6d3</cites><orcidid>0000-0002-8457-4946 ; 0000-0003-3037-3695 ; 0000-0003-4585-6403 ; 0000-0002-8620-5941 ; 0000-0003-3973-1575 ; 0000000330373695 ; 0000000284574946 ; 0000000286205941 ; 0000000345856403 ; 0000000339731575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1997431$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Almaraz, Rafael</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Toole, Justin</creatorcontrib><creatorcontrib>Austin, Rachelle</creatorcontrib><creatorcontrib>Farah, Yusef</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Krummel, Amber</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Sambur, Justin</creatorcontrib><title>Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory</title><title>Energy &amp; environmental science</title><description>Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the cooling rate. One could expect to tune the hot carrier extraction rate constant ( k ET ) via a Marcus–Gerischer relationship, where k ET depends exponentially on Δ G °′ (the standard driving force for interfacial electron transfer). Δ G °′ is defined as the energy level difference between a semiconductor's conduction/valence band (CB/VB) minima/maxima and the redox potential of reactant molecules in solution. A major challenge in the electrochemistry community is that conventional approaches to quantify Δ G °′ for bulk semiconductors ( e.g. , Mott–Schottky measurements) cannot be directly applied to ultrathin 2D electrodes. The specific problem is that enormous electronic bandgap changes (&gt;0.5 eV) and CB/VB edge movement take place upon illuminating or applying a potential to a 2D semiconductor electrode. Here, we develop an in situ absorbance spectroscopy approach to quantify interfacial energetics of 2D semiconductor/electrolyte interfaces using a minimal many-body model. Our results show that band edge movement in monolayer MoS 2 is significant (0.2–0.5 eV) over a narrow range of applied potentials (0.2–0.3 V). Such large band edge shifts could change k ET by a factor of 10–100, which has important consequences for practical solar energy conversion applications. We discuss the current experimental and theoretical knowledge gaps that must be addressed to minimize the error in the proposed optical approach.</description><subject>Conduction bands</subject><subject>Cooling rate</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Electron transfer</subject><subject>Energy conversion</subject><subject>Energy efficiency</subject><subject>Energy levels</subject><subject>Molybdenum disulfide</subject><subject>Photoelectrochemical devices</subject><subject>Redox potential</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Spectroscopy</subject><subject>Valence band</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxYMoWKsXP0HQm7CaP7vZzVHaaoWCCHpe0mTSprRJTbKHBT-8q614moH3e8MbHkLXlNxTwuXDlM9mhFJRzU_QiNZVWVQ1Ead_u5DsHF2ktCFEMFLLEfp665TPzvbOr7DzGaJV2qktBg9xBdnphIPFbIoT7JwO3nQ6h4hhCzrHYCDhLh28OLnc4bT_FY66Xg-ulGOPlTd4p3xfLIPpcV5DiP0lOrNqm-DqOMfo42n2PpkXi9fnl8njotCcsVzwCqRpFIeqNNSwpSCEES2HHzhTJZeqNLAEoUBT3lhtVUMUWFqXpbLUCsPH6OZwN6Ts2qRdBr0efvFDxpZKWZecDtDtAdrH8NlByu0mdNEPuVrW1BVnTcXEQN0dKB1DShFsu49up2LfUtL-VND-V8C_AS1Le7o</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Almaraz, Rafael</creator><creator>Sayer, Thomas</creator><creator>Toole, Justin</creator><creator>Austin, Rachelle</creator><creator>Farah, Yusef</creator><creator>Trainor, Nicholas</creator><creator>Redwing, Joan M.</creator><creator>Krummel, Amber</creator><creator>Montoya-Castillo, Andrés</creator><creator>Sambur, Justin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8457-4946</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0003-4585-6403</orcidid><orcidid>https://orcid.org/0000-0002-8620-5941</orcidid><orcidid>https://orcid.org/0000-0003-3973-1575</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000284574946</orcidid><orcidid>https://orcid.org/0000000286205941</orcidid><orcidid>https://orcid.org/0000000345856403</orcidid><orcidid>https://orcid.org/0000000339731575</orcidid></search><sort><creationdate>20231011</creationdate><title>Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory</title><author>Almaraz, Rafael ; Sayer, Thomas ; Toole, Justin ; Austin, Rachelle ; Farah, Yusef ; Trainor, Nicholas ; Redwing, Joan M. ; Krummel, Amber ; Montoya-Castillo, Andrés ; Sambur, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-35e9d8a3e54d1d2b60020c900632a439a4debe6aec138fcfa80aef1744af1f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conduction bands</topic><topic>Cooling rate</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Electron transfer</topic><topic>Energy conversion</topic><topic>Energy efficiency</topic><topic>Energy levels</topic><topic>Molybdenum disulfide</topic><topic>Photoelectrochemical devices</topic><topic>Redox potential</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Spectroscopy</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almaraz, Rafael</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Toole, Justin</creatorcontrib><creatorcontrib>Austin, Rachelle</creatorcontrib><creatorcontrib>Farah, Yusef</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Krummel, Amber</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Sambur, Justin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almaraz, Rafael</au><au>Sayer, Thomas</au><au>Toole, Justin</au><au>Austin, Rachelle</au><au>Farah, Yusef</au><au>Trainor, Nicholas</au><au>Redwing, Joan M.</au><au>Krummel, Amber</au><au>Montoya-Castillo, Andrés</au><au>Sambur, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-10-11</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>4522</spage><epage>4529</epage><pages>4522-4529</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the cooling rate. One could expect to tune the hot carrier extraction rate constant ( k ET ) via a Marcus–Gerischer relationship, where k ET depends exponentially on Δ G °′ (the standard driving force for interfacial electron transfer). Δ G °′ is defined as the energy level difference between a semiconductor's conduction/valence band (CB/VB) minima/maxima and the redox potential of reactant molecules in solution. A major challenge in the electrochemistry community is that conventional approaches to quantify Δ G °′ for bulk semiconductors ( e.g. , Mott–Schottky measurements) cannot be directly applied to ultrathin 2D electrodes. The specific problem is that enormous electronic bandgap changes (&gt;0.5 eV) and CB/VB edge movement take place upon illuminating or applying a potential to a 2D semiconductor electrode. Here, we develop an in situ absorbance spectroscopy approach to quantify interfacial energetics of 2D semiconductor/electrolyte interfaces using a minimal many-body model. Our results show that band edge movement in monolayer MoS 2 is significant (0.2–0.5 eV) over a narrow range of applied potentials (0.2–0.3 V). Such large band edge shifts could change k ET by a factor of 10–100, which has important consequences for practical solar energy conversion applications. We discuss the current experimental and theoretical knowledge gaps that must be addressed to minimize the error in the proposed optical approach.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3EE01165H</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8457-4946</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0003-4585-6403</orcidid><orcidid>https://orcid.org/0000-0002-8620-5941</orcidid><orcidid>https://orcid.org/0000-0003-3973-1575</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000284574946</orcidid><orcidid>https://orcid.org/0000000286205941</orcidid><orcidid>https://orcid.org/0000000345856403</orcidid><orcidid>https://orcid.org/0000000339731575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-10, Vol.16 (10), p.4522-4529
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1997431
source Royal Society Of Chemistry Journals 2008-
subjects Conduction bands
Cooling rate
Electrochemistry
Electrodes
Electrolytic cells
Electron transfer
Energy conversion
Energy efficiency
Energy levels
Molybdenum disulfide
Photoelectrochemical devices
Redox potential
Solar energy
Solar energy conversion
Spectroscopy
Valence band
title Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20interfacial%20energetics%20of%202D%20semiconductor%20electrodes%20using%20in%20situ%20spectroelectrochemistry%20and%20many-body%20theory&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Almaraz,%20Rafael&rft.date=2023-10-11&rft.volume=16&rft.issue=10&rft.spage=4522&rft.epage=4529&rft.pages=4522-4529&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D3EE01165H&rft_dat=%3Cproquest_osti_%3E2875328526%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875328526&rft_id=info:pmid/&rfr_iscdi=true