Fast point cloud generation with diffusion models in high energy physics

Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2023-08, Vol.108 (3), Article 036025
Hauptverfasser: Mikuni, Vinicius, Nachman, Benjamin, Pettee, Mariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. D
container_volume 108
creator Mikuni, Vinicius
Nachman, Benjamin
Pettee, Mariel
description Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models that produce images or at least a fixed set of features are limiting. We introduce a new neural network simulation based on a diffusion model that addresses these limitations named fast point cloud diffusion. We show that our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with competitive precision to other recently proposed models. Additionally, we use a procedure called progressive distillation to accelerate the generation time of our method, which is typically a significant challenge for diffusion models despite their state-of-the-art precision.
doi_str_mv 10.1103/PhysRevD.108.036025
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1997043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_108_036025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-69996bd763894cfbbcd6666ba39c23d1fc4105467dee1436c3012066824abcdd3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOOY-gS_B9867JEubR5nOCQNF9Dm0SbpGumY0mbJvb8um93L_O37cwY-QW4Q5IvD7t-YY39334xyhmAOXwBYXZMJEDhkAU5f_GeGazGL8giFKUDnihKxXZUx0H3yXqGnDwdKt61xfJh86-uNTQ62v60Mcx12wro3Ud7Tx24aO3PZI98N7b-INuarLNrrZuU_J5-rpY7nONq_PL8uHTWY4w5RJpZSsbC55oYSpq8pYOVRVcmUYt1gbgbAQMrfOoeDScEAGUhZMlANr-ZTcne6GmLyOxidnGhO6zpmkUakcBB8gfoJMH2LsXa33vd-V_VEj6FGa_pM2LAp9ksZ_AfnnYUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast point cloud generation with diffusion models in high energy physics</title><source>American Physical Society Journals</source><creator>Mikuni, Vinicius ; Nachman, Benjamin ; Pettee, Mariel</creator><creatorcontrib>Mikuni, Vinicius ; Nachman, Benjamin ; Pettee, Mariel ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models that produce images or at least a fixed set of features are limiting. We introduce a new neural network simulation based on a diffusion model that addresses these limitations named fast point cloud diffusion. We show that our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with competitive precision to other recently proposed models. Additionally, we use a procedure called progressive distillation to accelerate the generation time of our method, which is typically a significant challenge for diffusion models despite their state-of-the-art precision.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.108.036025</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>artificial neural networks ; machine learning ; particle production ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review. D, 2023-08, Vol.108 (3), Article 036025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-69996bd763894cfbbcd6666ba39c23d1fc4105467dee1436c3012066824abcdd3</citedby><cites>FETCH-LOGICAL-c321t-69996bd763894cfbbcd6666ba39c23d1fc4105467dee1436c3012066824abcdd3</cites><orcidid>0000-0002-1579-2421 ; 0000-0003-1024-0932 ; 0000000310240932 ; 0000000215792421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1997043$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikuni, Vinicius</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Pettee, Mariel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Fast point cloud generation with diffusion models in high energy physics</title><title>Physical review. D</title><description>Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models that produce images or at least a fixed set of features are limiting. We introduce a new neural network simulation based on a diffusion model that addresses these limitations named fast point cloud diffusion. We show that our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with competitive precision to other recently proposed models. Additionally, we use a procedure called progressive distillation to accelerate the generation time of our method, which is typically a significant challenge for diffusion models despite their state-of-the-art precision.</description><subject>artificial neural networks</subject><subject>machine learning</subject><subject>particle production</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoOOY-gS_B9867JEubR5nOCQNF9Dm0SbpGumY0mbJvb8um93L_O37cwY-QW4Q5IvD7t-YY39334xyhmAOXwBYXZMJEDhkAU5f_GeGazGL8giFKUDnihKxXZUx0H3yXqGnDwdKt61xfJh86-uNTQ62v60Mcx12wro3Ud7Tx24aO3PZI98N7b-INuarLNrrZuU_J5-rpY7nONq_PL8uHTWY4w5RJpZSsbC55oYSpq8pYOVRVcmUYt1gbgbAQMrfOoeDScEAGUhZMlANr-ZTcne6GmLyOxidnGhO6zpmkUakcBB8gfoJMH2LsXa33vd-V_VEj6FGa_pM2LAp9ksZ_AfnnYUk</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Mikuni, Vinicius</creator><creator>Nachman, Benjamin</creator><creator>Pettee, Mariel</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1579-2421</orcidid><orcidid>https://orcid.org/0000-0003-1024-0932</orcidid><orcidid>https://orcid.org/0000000310240932</orcidid><orcidid>https://orcid.org/0000000215792421</orcidid></search><sort><creationdate>20230828</creationdate><title>Fast point cloud generation with diffusion models in high energy physics</title><author>Mikuni, Vinicius ; Nachman, Benjamin ; Pettee, Mariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-69996bd763894cfbbcd6666ba39c23d1fc4105467dee1436c3012066824abcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>artificial neural networks</topic><topic>machine learning</topic><topic>particle production</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikuni, Vinicius</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Pettee, Mariel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikuni, Vinicius</au><au>Nachman, Benjamin</au><au>Pettee, Mariel</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast point cloud generation with diffusion models in high energy physics</atitle><jtitle>Physical review. D</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>108</volume><issue>3</issue><artnum>036025</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models that produce images or at least a fixed set of features are limiting. We introduce a new neural network simulation based on a diffusion model that addresses these limitations named fast point cloud diffusion. We show that our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with competitive precision to other recently proposed models. Additionally, we use a procedure called progressive distillation to accelerate the generation time of our method, which is typically a significant challenge for diffusion models despite their state-of-the-art precision.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.108.036025</doi><orcidid>https://orcid.org/0000-0002-1579-2421</orcidid><orcidid>https://orcid.org/0000-0003-1024-0932</orcidid><orcidid>https://orcid.org/0000000310240932</orcidid><orcidid>https://orcid.org/0000000215792421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2023-08, Vol.108 (3), Article 036025
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1997043
source American Physical Society Journals
subjects artificial neural networks
machine learning
particle production
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Fast point cloud generation with diffusion models in high energy physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20point%20cloud%20generation%20with%20diffusion%20models%20in%20high%20energy%20physics&rft.jtitle=Physical%20review.%20D&rft.au=Mikuni,%20Vinicius&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-08-28&rft.volume=108&rft.issue=3&rft.artnum=036025&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.108.036025&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_108_036025%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true