Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance

SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2022-07, Vol.111 (1), p.164-182
Hauptverfasser: Xu, Yuan‐Yuan, Zeng, Ren‐Fang, Zhou, Huan, Qiu, Mei‐Qi, Gan, Zhi‐Meng, Yang, Yi‐Lin, Hu, Si‐Fan, Zhou, Jing‐Jing, Hu, Chun‐Gen, Zhang, Jin‐Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 164
container_title The Plant journal : for cell and molecular biology
container_volume 111
creator Xu, Yuan‐Yuan
Zeng, Ren‐Fang
Zhou, Huan
Qiu, Mei‐Qi
Gan, Zhi‐Meng
Yang, Yi‐Lin
Hu, Si‐Fan
Zhou, Jing‐Jing
Hu, Chun‐Gen
Zhang, Jin‐Zhi
description SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus. Significance Statement Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.
doi_str_mv 10.1111/tpj.15785
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1996596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654297909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpabZpD32BItpLe3CisTTy-hi2TbohkBIS6KUIW5azWrySK8mEffsocZJDoXMRDN__DeIn5COwI8hznMbtEWC1xFdkAVxiwYH_fk0WrJasqASUB-RdjFvGoOJSvCUHHIVkwHFB_qxsClOkp1frs_X3E6q9H01okon0zqYNtSlS61Je6WS9o2MTkjOBdmaz74J1NHkazO005Ajtgp9uNynvhhxw2rwnb_pmiObD03tIbk5_XK9-FheXZ-vVyUWhBSAWEnRfVQg9kyX2Tcug47qtEJeyNKh7KaCBXrKyKhnWsgUtetEimrpbCslrfkg-z14fk1VR22T0RnvnjE4K6lrmVIa-ztAY_N_JxKR2NmozDI0zfoqqlCjKuqrZg-_LP-jWT8HlL2QqnwSBKDL1baZ08DEG06sx2F0T9gqYeihG5WLUYzGZ_fRknNqd6V7I5yYycDwDd3Yw-_-b1PWv81l5D7F4lhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684614554</pqid></control><display><type>article</type><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</creator><creatorcontrib>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</creatorcontrib><description>SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus. Significance Statement Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15785</identifier><identifier>PMID: 35460135</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Biosynthesis ; brassinazole‐resistant (BZR) ; Citrinae ; citrus ; Crop production ; Dehydrin ; Drought ; Drought resistance ; Environmental stress ; Flowering ; FRIGIDA ; Fruits ; Functionals ; Gene expression ; Molecular modelling ; Plant growth ; Plants (botany) ; Resistance factors ; Signal transduction ; transcriptome ; Transcriptomics ; Woody plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2022-07, Vol.111 (1), p.164-182</ispartof><rights>2022 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</citedby><cites>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</cites><orcidid>0000-0002-3820-889X ; 000000023820889X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35460135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1996596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yuan‐Yuan</creatorcontrib><creatorcontrib>Zeng, Ren‐Fang</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Qiu, Mei‐Qi</creatorcontrib><creatorcontrib>Gan, Zhi‐Meng</creatorcontrib><creatorcontrib>Yang, Yi‐Lin</creatorcontrib><creatorcontrib>Hu, Si‐Fan</creatorcontrib><creatorcontrib>Zhou, Jing‐Jing</creatorcontrib><creatorcontrib>Hu, Chun‐Gen</creatorcontrib><creatorcontrib>Zhang, Jin‐Zhi</creatorcontrib><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus. Significance Statement Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</description><subject>Arabidopsis</subject><subject>Biosynthesis</subject><subject>brassinazole‐resistant (BZR)</subject><subject>Citrinae</subject><subject>citrus</subject><subject>Crop production</subject><subject>Dehydrin</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Environmental stress</subject><subject>Flowering</subject><subject>FRIGIDA</subject><subject>Fruits</subject><subject>Functionals</subject><subject>Gene expression</subject><subject>Molecular modelling</subject><subject>Plant growth</subject><subject>Plants (botany)</subject><subject>Resistance factors</subject><subject>Signal transduction</subject><subject>transcriptome</subject><subject>Transcriptomics</subject><subject>Woody plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhkVpabZpD32BItpLe3CisTTy-hi2TbohkBIS6KUIW5azWrySK8mEffsocZJDoXMRDN__DeIn5COwI8hznMbtEWC1xFdkAVxiwYH_fk0WrJasqASUB-RdjFvGoOJSvCUHHIVkwHFB_qxsClOkp1frs_X3E6q9H01okon0zqYNtSlS61Je6WS9o2MTkjOBdmaz74J1NHkazO005Ajtgp9uNynvhhxw2rwnb_pmiObD03tIbk5_XK9-FheXZ-vVyUWhBSAWEnRfVQg9kyX2Tcug47qtEJeyNKh7KaCBXrKyKhnWsgUtetEimrpbCslrfkg-z14fk1VR22T0RnvnjE4K6lrmVIa-ztAY_N_JxKR2NmozDI0zfoqqlCjKuqrZg-_LP-jWT8HlL2QqnwSBKDL1baZ08DEG06sx2F0T9gqYeihG5WLUYzGZ_fRknNqd6V7I5yYycDwDd3Yw-_-b1PWv81l5D7F4lhM</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Xu, Yuan‐Yuan</creator><creator>Zeng, Ren‐Fang</creator><creator>Zhou, Huan</creator><creator>Qiu, Mei‐Qi</creator><creator>Gan, Zhi‐Meng</creator><creator>Yang, Yi‐Lin</creator><creator>Hu, Si‐Fan</creator><creator>Zhou, Jing‐Jing</creator><creator>Hu, Chun‐Gen</creator><creator>Zhang, Jin‐Zhi</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3820-889X</orcidid><orcidid>https://orcid.org/000000023820889X</orcidid></search><sort><creationdate>202207</creationdate><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><author>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arabidopsis</topic><topic>Biosynthesis</topic><topic>brassinazole‐resistant (BZR)</topic><topic>Citrinae</topic><topic>citrus</topic><topic>Crop production</topic><topic>Dehydrin</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Environmental stress</topic><topic>Flowering</topic><topic>FRIGIDA</topic><topic>Fruits</topic><topic>Functionals</topic><topic>Gene expression</topic><topic>Molecular modelling</topic><topic>Plant growth</topic><topic>Plants (botany)</topic><topic>Resistance factors</topic><topic>Signal transduction</topic><topic>transcriptome</topic><topic>Transcriptomics</topic><topic>Woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuan‐Yuan</creatorcontrib><creatorcontrib>Zeng, Ren‐Fang</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Qiu, Mei‐Qi</creatorcontrib><creatorcontrib>Gan, Zhi‐Meng</creatorcontrib><creatorcontrib>Yang, Yi‐Lin</creatorcontrib><creatorcontrib>Hu, Si‐Fan</creatorcontrib><creatorcontrib>Zhou, Jing‐Jing</creatorcontrib><creatorcontrib>Hu, Chun‐Gen</creatorcontrib><creatorcontrib>Zhang, Jin‐Zhi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuan‐Yuan</au><au>Zeng, Ren‐Fang</au><au>Zhou, Huan</au><au>Qiu, Mei‐Qi</au><au>Gan, Zhi‐Meng</au><au>Yang, Yi‐Lin</au><au>Hu, Si‐Fan</au><au>Zhou, Jing‐Jing</au><au>Hu, Chun‐Gen</au><au>Zhang, Jin‐Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2022-07</date><risdate>2022</risdate><volume>111</volume><issue>1</issue><spage>164</spage><epage>182</epage><pages>164-182</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus. Significance Statement Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35460135</pmid><doi>10.1111/tpj.15785</doi><tpages>182</tpages><orcidid>https://orcid.org/0000-0002-3820-889X</orcidid><orcidid>https://orcid.org/000000023820889X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2022-07, Vol.111 (1), p.164-182
issn 0960-7412
1365-313X
language eng
recordid cdi_osti_scitechconnect_1996596
source IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Biosynthesis
brassinazole‐resistant (BZR)
Citrinae
citrus
Crop production
Dehydrin
Drought
Drought resistance
Environmental stress
Flowering
FRIGIDA
Fruits
Functionals
Gene expression
Molecular modelling
Plant growth
Plants (botany)
Resistance factors
Signal transduction
transcriptome
Transcriptomics
Woody plants
title Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrus%20FRIGIDA%20cooperates%20with%20its%20interaction%20partner%20dehydrin%20to%20regulate%20drought%20tolerance&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Xu,%20Yuan%E2%80%90Yuan&rft.date=2022-07&rft.volume=111&rft.issue=1&rft.spage=164&rft.epage=182&rft.pages=164-182&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15785&rft_dat=%3Cproquest_osti_%3E2654297909%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684614554&rft_id=info:pmid/35460135&rfr_iscdi=true