Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance
SUMMARY Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored th...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2022-07, Vol.111 (1), p.164-182 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1 |
container_start_page | 164 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 111 |
creator | Xu, Yuan‐Yuan Zeng, Ren‐Fang Zhou, Huan Qiu, Mei‐Qi Gan, Zhi‐Meng Yang, Yi‐Lin Hu, Si‐Fan Zhou, Jing‐Jing Hu, Chun‐Gen Zhang, Jin‐Zhi |
description | SUMMARY
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus.
Significance Statement
Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. |
doi_str_mv | 10.1111/tpj.15785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1996596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654297909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpabZpD32BItpLe3CisTTy-hi2TbohkBIS6KUIW5azWrySK8mEffsocZJDoXMRDN__DeIn5COwI8hznMbtEWC1xFdkAVxiwYH_fk0WrJasqASUB-RdjFvGoOJSvCUHHIVkwHFB_qxsClOkp1frs_X3E6q9H01okon0zqYNtSlS61Je6WS9o2MTkjOBdmaz74J1NHkazO005Ajtgp9uNynvhhxw2rwnb_pmiObD03tIbk5_XK9-FheXZ-vVyUWhBSAWEnRfVQg9kyX2Tcug47qtEJeyNKh7KaCBXrKyKhnWsgUtetEimrpbCslrfkg-z14fk1VR22T0RnvnjE4K6lrmVIa-ztAY_N_JxKR2NmozDI0zfoqqlCjKuqrZg-_LP-jWT8HlL2QqnwSBKDL1baZ08DEG06sx2F0T9gqYeihG5WLUYzGZ_fRknNqd6V7I5yYycDwDd3Yw-_-b1PWv81l5D7F4lhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684614554</pqid></control><display><type>article</type><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</creator><creatorcontrib>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</creatorcontrib><description>SUMMARY
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus.
Significance Statement
Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15785</identifier><identifier>PMID: 35460135</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Biosynthesis ; brassinazole‐resistant (BZR) ; Citrinae ; citrus ; Crop production ; Dehydrin ; Drought ; Drought resistance ; Environmental stress ; Flowering ; FRIGIDA ; Fruits ; Functionals ; Gene expression ; Molecular modelling ; Plant growth ; Plants (botany) ; Resistance factors ; Signal transduction ; transcriptome ; Transcriptomics ; Woody plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2022-07, Vol.111 (1), p.164-182</ispartof><rights>2022 Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2022 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</citedby><cites>FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</cites><orcidid>0000-0002-3820-889X ; 000000023820889X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35460135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1996596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yuan‐Yuan</creatorcontrib><creatorcontrib>Zeng, Ren‐Fang</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Qiu, Mei‐Qi</creatorcontrib><creatorcontrib>Gan, Zhi‐Meng</creatorcontrib><creatorcontrib>Yang, Yi‐Lin</creatorcontrib><creatorcontrib>Hu, Si‐Fan</creatorcontrib><creatorcontrib>Zhou, Jing‐Jing</creatorcontrib><creatorcontrib>Hu, Chun‐Gen</creatorcontrib><creatorcontrib>Zhang, Jin‐Zhi</creatorcontrib><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus.
Significance Statement
Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</description><subject>Arabidopsis</subject><subject>Biosynthesis</subject><subject>brassinazole‐resistant (BZR)</subject><subject>Citrinae</subject><subject>citrus</subject><subject>Crop production</subject><subject>Dehydrin</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Environmental stress</subject><subject>Flowering</subject><subject>FRIGIDA</subject><subject>Fruits</subject><subject>Functionals</subject><subject>Gene expression</subject><subject>Molecular modelling</subject><subject>Plant growth</subject><subject>Plants (botany)</subject><subject>Resistance factors</subject><subject>Signal transduction</subject><subject>transcriptome</subject><subject>Transcriptomics</subject><subject>Woody plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhkVpabZpD32BItpLe3CisTTy-hi2TbohkBIS6KUIW5azWrySK8mEffsocZJDoXMRDN__DeIn5COwI8hznMbtEWC1xFdkAVxiwYH_fk0WrJasqASUB-RdjFvGoOJSvCUHHIVkwHFB_qxsClOkp1frs_X3E6q9H01okon0zqYNtSlS61Je6WS9o2MTkjOBdmaz74J1NHkazO005Ajtgp9uNynvhhxw2rwnb_pmiObD03tIbk5_XK9-FheXZ-vVyUWhBSAWEnRfVQg9kyX2Tcug47qtEJeyNKh7KaCBXrKyKhnWsgUtetEimrpbCslrfkg-z14fk1VR22T0RnvnjE4K6lrmVIa-ztAY_N_JxKR2NmozDI0zfoqqlCjKuqrZg-_LP-jWT8HlL2QqnwSBKDL1baZ08DEG06sx2F0T9gqYeihG5WLUYzGZ_fRknNqd6V7I5yYycDwDd3Yw-_-b1PWv81l5D7F4lhM</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Xu, Yuan‐Yuan</creator><creator>Zeng, Ren‐Fang</creator><creator>Zhou, Huan</creator><creator>Qiu, Mei‐Qi</creator><creator>Gan, Zhi‐Meng</creator><creator>Yang, Yi‐Lin</creator><creator>Hu, Si‐Fan</creator><creator>Zhou, Jing‐Jing</creator><creator>Hu, Chun‐Gen</creator><creator>Zhang, Jin‐Zhi</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3820-889X</orcidid><orcidid>https://orcid.org/000000023820889X</orcidid></search><sort><creationdate>202207</creationdate><title>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</title><author>Xu, Yuan‐Yuan ; Zeng, Ren‐Fang ; Zhou, Huan ; Qiu, Mei‐Qi ; Gan, Zhi‐Meng ; Yang, Yi‐Lin ; Hu, Si‐Fan ; Zhou, Jing‐Jing ; Hu, Chun‐Gen ; Zhang, Jin‐Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-61cf7751f0625fab01d3cb755862e5cf641a1f602720596b1c4f4b55e9d846393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arabidopsis</topic><topic>Biosynthesis</topic><topic>brassinazole‐resistant (BZR)</topic><topic>Citrinae</topic><topic>citrus</topic><topic>Crop production</topic><topic>Dehydrin</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Environmental stress</topic><topic>Flowering</topic><topic>FRIGIDA</topic><topic>Fruits</topic><topic>Functionals</topic><topic>Gene expression</topic><topic>Molecular modelling</topic><topic>Plant growth</topic><topic>Plants (botany)</topic><topic>Resistance factors</topic><topic>Signal transduction</topic><topic>transcriptome</topic><topic>Transcriptomics</topic><topic>Woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuan‐Yuan</creatorcontrib><creatorcontrib>Zeng, Ren‐Fang</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Qiu, Mei‐Qi</creatorcontrib><creatorcontrib>Gan, Zhi‐Meng</creatorcontrib><creatorcontrib>Yang, Yi‐Lin</creatorcontrib><creatorcontrib>Hu, Si‐Fan</creatorcontrib><creatorcontrib>Zhou, Jing‐Jing</creatorcontrib><creatorcontrib>Hu, Chun‐Gen</creatorcontrib><creatorcontrib>Zhang, Jin‐Zhi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuan‐Yuan</au><au>Zeng, Ren‐Fang</au><au>Zhou, Huan</au><au>Qiu, Mei‐Qi</au><au>Gan, Zhi‐Meng</au><au>Yang, Yi‐Lin</au><au>Hu, Si‐Fan</au><au>Zhou, Jing‐Jing</au><au>Hu, Chun‐Gen</au><au>Zhang, Jin‐Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2022-07</date><risdate>2022</risdate><volume>111</volume><issue>1</issue><spage>164</spage><epage>182</epage><pages>164-182</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole‐resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI‐mediated drought stress response in citrus.
Significance Statement
Citrus FRIGIDA (CiFRI) regulates drought tolerance. Citrus dehydrin protects CiFRI from stress‐induced degradation, thereby enhancing plant drought tolerance.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35460135</pmid><doi>10.1111/tpj.15785</doi><tpages>182</tpages><orcidid>https://orcid.org/0000-0002-3820-889X</orcidid><orcidid>https://orcid.org/000000023820889X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2022-07, Vol.111 (1), p.164-182 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_osti_scitechconnect_1996596 |
source | IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis Biosynthesis brassinazole‐resistant (BZR) Citrinae citrus Crop production Dehydrin Drought Drought resistance Environmental stress Flowering FRIGIDA Fruits Functionals Gene expression Molecular modelling Plant growth Plants (botany) Resistance factors Signal transduction transcriptome Transcriptomics Woody plants |
title | Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrus%20FRIGIDA%20cooperates%20with%20its%20interaction%20partner%20dehydrin%20to%20regulate%20drought%20tolerance&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Xu,%20Yuan%E2%80%90Yuan&rft.date=2022-07&rft.volume=111&rft.issue=1&rft.spage=164&rft.epage=182&rft.pages=164-182&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15785&rft_dat=%3Cproquest_osti_%3E2654297909%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684614554&rft_id=info:pmid/35460135&rfr_iscdi=true |