Origin of hydroxyl pair formation on reduced anatase TiO2(101)

The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (19), p.13645-13653
Hauptverfasser: Adamsen, Kræn C, Petrik, Nikolay G, Wilke Dononelli, Kimmel, Greg A, Xu, Tao, Li, Zheshen, Lammich, Lutz, Hammer, Bjørk, Lauritsen, Jeppe V, Wendt, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13653
container_issue 19
container_start_page 13645
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Adamsen, Kræn C
Petrik, Nikolay G
Wilke Dononelli
Kimmel, Greg A
Xu, Tao
Li, Zheshen
Lammich, Lutz
Hammer, Bjørk
Lauritsen, Jeppe V
Wendt, Stefan
description The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.
doi_str_mv 10.1039/d3cp01051a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1996329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810923467</sourcerecordid><originalsourceid>FETCH-LOGICAL-o243t-6349a12e29a3ae801dcc7f44e28dc4eb5a4e9ed6747f4f8290ef00f5e9db5753</originalsourceid><addsrcrecordid>eNpdz01LAzEQBuAgCtbqxV8Q9FIPq5OPzW4ughS_oNBL70uazNqUbVKTXbD_3pWKB08zvPPwwhByzeCegdAPTtg9MCiZOSETJpUoNNTy9G-v1Dm5yHkLAKxkYkIel8l_-EBjSzcHl-LXoaN74xNtY9qZ3sfxFGhCN1h01ATTm4x05Zd8xoDdXZKz1nQZr37nlKxenlfzt2KxfH2fPy2KyKXoCyWkNowj10YYrIE5a6tWSuS1sxLXpZGo0alKjmlbcw3YArQlarcuq1JMyc2xNubeN9n6Hu3GxhDQ9g3TWgmuRzQ7on2KnwPmvtn5bLHrTMA45IbXDDQXUlUjvf1Ht3FIYfzgR0lVA2gtvgGKKWIv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814680099</pqid></control><display><type>article</type><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan</creator><creatorcontrib>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01051a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Anatase ; Density functional theory ; Infrared reflection ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metal oxides ; Room temperature ; Scanning tunneling microscopy ; Thermal stability ; Titanium dioxide ; Valence band ; Water splitting</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (19), p.13645-13653</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000034953652X ; 0000000169908971 ; 0000000278496347 ; 0000000162908354 ; 0000000344472440 ; 0000000171290752 ; 0000000283811620 ; 0000000230321476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamsen, Kræn C</creatorcontrib><creatorcontrib>Petrik, Nikolay G</creatorcontrib><creatorcontrib>Wilke Dononelli</creatorcontrib><creatorcontrib>Kimmel, Greg A</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Zheshen</creatorcontrib><creatorcontrib>Lammich, Lutz</creatorcontrib><creatorcontrib>Hammer, Bjørk</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V</creatorcontrib><creatorcontrib>Wendt, Stefan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><title>Physical chemistry chemical physics : PCCP</title><description>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</description><subject>Absorption spectroscopy</subject><subject>Anatase</subject><subject>Density functional theory</subject><subject>Infrared reflection</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metal oxides</subject><subject>Room temperature</subject><subject>Scanning tunneling microscopy</subject><subject>Thermal stability</subject><subject>Titanium dioxide</subject><subject>Valence band</subject><subject>Water splitting</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdz01LAzEQBuAgCtbqxV8Q9FIPq5OPzW4ughS_oNBL70uazNqUbVKTXbD_3pWKB08zvPPwwhByzeCegdAPTtg9MCiZOSETJpUoNNTy9G-v1Dm5yHkLAKxkYkIel8l_-EBjSzcHl-LXoaN74xNtY9qZ3sfxFGhCN1h01ATTm4x05Zd8xoDdXZKz1nQZr37nlKxenlfzt2KxfH2fPy2KyKXoCyWkNowj10YYrIE5a6tWSuS1sxLXpZGo0alKjmlbcw3YArQlarcuq1JMyc2xNubeN9n6Hu3GxhDQ9g3TWgmuRzQ7on2KnwPmvtn5bLHrTMA45IbXDDQXUlUjvf1Ht3FIYfzgR0lVA2gtvgGKKWIv</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>Adamsen, Kræn C</creator><creator>Petrik, Nikolay G</creator><creator>Wilke Dononelli</creator><creator>Kimmel, Greg A</creator><creator>Xu, Tao</creator><creator>Li, Zheshen</creator><creator>Lammich, Lutz</creator><creator>Hammer, Bjørk</creator><creator>Lauritsen, Jeppe V</creator><creator>Wendt, Stefan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000034953652X</orcidid><orcidid>https://orcid.org/0000000169908971</orcidid><orcidid>https://orcid.org/0000000278496347</orcidid><orcidid>https://orcid.org/0000000162908354</orcidid><orcidid>https://orcid.org/0000000344472440</orcidid><orcidid>https://orcid.org/0000000171290752</orcidid><orcidid>https://orcid.org/0000000283811620</orcidid><orcidid>https://orcid.org/0000000230321476</orcidid></search><sort><creationdate>20230517</creationdate><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><author>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o243t-6349a12e29a3ae801dcc7f44e28dc4eb5a4e9ed6747f4f8290ef00f5e9db5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Anatase</topic><topic>Density functional theory</topic><topic>Infrared reflection</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metal oxides</topic><topic>Room temperature</topic><topic>Scanning tunneling microscopy</topic><topic>Thermal stability</topic><topic>Titanium dioxide</topic><topic>Valence band</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamsen, Kræn C</creatorcontrib><creatorcontrib>Petrik, Nikolay G</creatorcontrib><creatorcontrib>Wilke Dononelli</creatorcontrib><creatorcontrib>Kimmel, Greg A</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Zheshen</creatorcontrib><creatorcontrib>Lammich, Lutz</creatorcontrib><creatorcontrib>Hammer, Bjørk</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V</creatorcontrib><creatorcontrib>Wendt, Stefan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamsen, Kræn C</au><au>Petrik, Nikolay G</au><au>Wilke Dononelli</au><au>Kimmel, Greg A</au><au>Xu, Tao</au><au>Li, Zheshen</au><au>Lammich, Lutz</au><au>Hammer, Bjørk</au><au>Lauritsen, Jeppe V</au><au>Wendt, Stefan</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-05-17</date><risdate>2023</risdate><volume>25</volume><issue>19</issue><spage>13645</spage><epage>13653</epage><pages>13645-13653</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp01051a</doi><tpages>9</tpages><orcidid>https://orcid.org/000000034953652X</orcidid><orcidid>https://orcid.org/0000000169908971</orcidid><orcidid>https://orcid.org/0000000278496347</orcidid><orcidid>https://orcid.org/0000000162908354</orcidid><orcidid>https://orcid.org/0000000344472440</orcidid><orcidid>https://orcid.org/0000000171290752</orcidid><orcidid>https://orcid.org/0000000283811620</orcidid><orcidid>https://orcid.org/0000000230321476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (19), p.13645-13653
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1996329
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Absorption spectroscopy
Anatase
Density functional theory
Infrared reflection
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Metal oxides
Room temperature
Scanning tunneling microscopy
Thermal stability
Titanium dioxide
Valence band
Water splitting
title Origin of hydroxyl pair formation on reduced anatase TiO2(101)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20hydroxyl%20pair%20formation%20on%20reduced%20anatase%20TiO2(101)&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Adamsen,%20Kr%C3%A6n%20C&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2023-05-17&rft.volume=25&rft.issue=19&rft.spage=13645&rft.epage=13653&rft.pages=13645-13653&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01051a&rft_dat=%3Cproquest_osti_%3E2810923467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814680099&rft_id=info:pmid/&rfr_iscdi=true