Origin of hydroxyl pair formation on reduced anatase TiO2(101)
The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (19), p.13645-13653 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13653 |
---|---|
container_issue | 19 |
container_start_page | 13645 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Adamsen, Kræn C Petrik, Nikolay G Wilke Dononelli Kimmel, Greg A Xu, Tao Li, Zheshen Lammich, Lutz Hammer, Bjørk Lauritsen, Jeppe V Wendt, Stefan |
description | The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K. |
doi_str_mv | 10.1039/d3cp01051a |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1996329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810923467</sourcerecordid><originalsourceid>FETCH-LOGICAL-o243t-6349a12e29a3ae801dcc7f44e28dc4eb5a4e9ed6747f4f8290ef00f5e9db5753</originalsourceid><addsrcrecordid>eNpdz01LAzEQBuAgCtbqxV8Q9FIPq5OPzW4ughS_oNBL70uazNqUbVKTXbD_3pWKB08zvPPwwhByzeCegdAPTtg9MCiZOSETJpUoNNTy9G-v1Dm5yHkLAKxkYkIel8l_-EBjSzcHl-LXoaN74xNtY9qZ3sfxFGhCN1h01ATTm4x05Zd8xoDdXZKz1nQZr37nlKxenlfzt2KxfH2fPy2KyKXoCyWkNowj10YYrIE5a6tWSuS1sxLXpZGo0alKjmlbcw3YArQlarcuq1JMyc2xNubeN9n6Hu3GxhDQ9g3TWgmuRzQ7on2KnwPmvtn5bLHrTMA45IbXDDQXUlUjvf1Ht3FIYfzgR0lVA2gtvgGKKWIv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814680099</pqid></control><display><type>article</type><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan</creator><creatorcontrib>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01051a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Anatase ; Density functional theory ; Infrared reflection ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metal oxides ; Room temperature ; Scanning tunneling microscopy ; Thermal stability ; Titanium dioxide ; Valence band ; Water splitting</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (19), p.13645-13653</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000034953652X ; 0000000169908971 ; 0000000278496347 ; 0000000162908354 ; 0000000344472440 ; 0000000171290752 ; 0000000283811620 ; 0000000230321476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamsen, Kræn C</creatorcontrib><creatorcontrib>Petrik, Nikolay G</creatorcontrib><creatorcontrib>Wilke Dononelli</creatorcontrib><creatorcontrib>Kimmel, Greg A</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Zheshen</creatorcontrib><creatorcontrib>Lammich, Lutz</creatorcontrib><creatorcontrib>Hammer, Bjørk</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V</creatorcontrib><creatorcontrib>Wendt, Stefan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><title>Physical chemistry chemical physics : PCCP</title><description>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</description><subject>Absorption spectroscopy</subject><subject>Anatase</subject><subject>Density functional theory</subject><subject>Infrared reflection</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metal oxides</subject><subject>Room temperature</subject><subject>Scanning tunneling microscopy</subject><subject>Thermal stability</subject><subject>Titanium dioxide</subject><subject>Valence band</subject><subject>Water splitting</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdz01LAzEQBuAgCtbqxV8Q9FIPq5OPzW4ughS_oNBL70uazNqUbVKTXbD_3pWKB08zvPPwwhByzeCegdAPTtg9MCiZOSETJpUoNNTy9G-v1Dm5yHkLAKxkYkIel8l_-EBjSzcHl-LXoaN74xNtY9qZ3sfxFGhCN1h01ATTm4x05Zd8xoDdXZKz1nQZr37nlKxenlfzt2KxfH2fPy2KyKXoCyWkNowj10YYrIE5a6tWSuS1sxLXpZGo0alKjmlbcw3YArQlarcuq1JMyc2xNubeN9n6Hu3GxhDQ9g3TWgmuRzQ7on2KnwPmvtn5bLHrTMA45IbXDDQXUlUjvf1Ht3FIYfzgR0lVA2gtvgGKKWIv</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>Adamsen, Kræn C</creator><creator>Petrik, Nikolay G</creator><creator>Wilke Dononelli</creator><creator>Kimmel, Greg A</creator><creator>Xu, Tao</creator><creator>Li, Zheshen</creator><creator>Lammich, Lutz</creator><creator>Hammer, Bjørk</creator><creator>Lauritsen, Jeppe V</creator><creator>Wendt, Stefan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000034953652X</orcidid><orcidid>https://orcid.org/0000000169908971</orcidid><orcidid>https://orcid.org/0000000278496347</orcidid><orcidid>https://orcid.org/0000000162908354</orcidid><orcidid>https://orcid.org/0000000344472440</orcidid><orcidid>https://orcid.org/0000000171290752</orcidid><orcidid>https://orcid.org/0000000283811620</orcidid><orcidid>https://orcid.org/0000000230321476</orcidid></search><sort><creationdate>20230517</creationdate><title>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</title><author>Adamsen, Kræn C ; Petrik, Nikolay G ; Wilke Dononelli ; Kimmel, Greg A ; Xu, Tao ; Li, Zheshen ; Lammich, Lutz ; Hammer, Bjørk ; Lauritsen, Jeppe V ; Wendt, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o243t-6349a12e29a3ae801dcc7f44e28dc4eb5a4e9ed6747f4f8290ef00f5e9db5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Anatase</topic><topic>Density functional theory</topic><topic>Infrared reflection</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metal oxides</topic><topic>Room temperature</topic><topic>Scanning tunneling microscopy</topic><topic>Thermal stability</topic><topic>Titanium dioxide</topic><topic>Valence band</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamsen, Kræn C</creatorcontrib><creatorcontrib>Petrik, Nikolay G</creatorcontrib><creatorcontrib>Wilke Dononelli</creatorcontrib><creatorcontrib>Kimmel, Greg A</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Zheshen</creatorcontrib><creatorcontrib>Lammich, Lutz</creatorcontrib><creatorcontrib>Hammer, Bjørk</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V</creatorcontrib><creatorcontrib>Wendt, Stefan</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamsen, Kræn C</au><au>Petrik, Nikolay G</au><au>Wilke Dononelli</au><au>Kimmel, Greg A</au><au>Xu, Tao</au><au>Li, Zheshen</au><au>Lammich, Lutz</au><au>Hammer, Bjørk</au><au>Lauritsen, Jeppe V</au><au>Wendt, Stefan</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of hydroxyl pair formation on reduced anatase TiO2(101)</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-05-17</date><risdate>2023</risdate><volume>25</volume><issue>19</issue><spage>13645</spage><epage>13653</epage><pages>13645-13653</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp01051a</doi><tpages>9</tpages><orcidid>https://orcid.org/000000034953652X</orcidid><orcidid>https://orcid.org/0000000169908971</orcidid><orcidid>https://orcid.org/0000000278496347</orcidid><orcidid>https://orcid.org/0000000162908354</orcidid><orcidid>https://orcid.org/0000000344472440</orcidid><orcidid>https://orcid.org/0000000171290752</orcidid><orcidid>https://orcid.org/0000000283811620</orcidid><orcidid>https://orcid.org/0000000230321476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (19), p.13645-13653 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1996329 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Absorption spectroscopy Anatase Density functional theory Infrared reflection INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Metal oxides Room temperature Scanning tunneling microscopy Thermal stability Titanium dioxide Valence band Water splitting |
title | Origin of hydroxyl pair formation on reduced anatase TiO2(101) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20hydroxyl%20pair%20formation%20on%20reduced%20anatase%20TiO2(101)&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Adamsen,%20Kr%C3%A6n%20C&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2023-05-17&rft.volume=25&rft.issue=19&rft.spage=13645&rft.epage=13653&rft.pages=13645-13653&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01051a&rft_dat=%3Cproquest_osti_%3E2810923467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814680099&rft_id=info:pmid/&rfr_iscdi=true |