Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers tra...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2023-07, Vol.164, p.317-331 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | |
container_start_page | 317 |
container_title | Acta biomaterialia |
container_volume | 164 |
creator | Georgiadis, Marios Menzel, Miriam Reuter, Jan A Born, Donald E Kovacevich, Sophie R Alvarez, Dario Taghavi, Hossein Moein Schroeter, Aileen Rudin, Markus Gao, Zirui Guizar-Sicairos, Manuel Weiss, Thomas M Axer, Markus Rajkovic, Ivan Zeineh, Michael M |
description | Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons.
X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods.
To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2023.04.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1996020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706123002222</els_id><sourcerecordid>2806456732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-73a5cd6ac6db1ab7c50187413f3e5f4a23edf73f4b8f41d00493e39d4990739c3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpaNK0_6AU0VUXY-fqYcveFELoIxDoJoXuhCxdTzS15alkF-bfV47TLrPSAX3nvg4h7xiUDFh9dSiNnTs_lRy4KEGWwNsX5II1qilUVTcvs1aSFwpqdk5ep3QAEA3jzStyLhS0jQS4IOZ2NHsf9tTGKaVV9L7DmKgPdJyWhDt69Ptd1uEXnnbUBEcfltEE2kWTmeXRk0YzDIUJ-wHpzyKaE03WzDPG_PmGnPVmSPj26b0kP758vr_5Vtx9_3p7c31XWCmquVDCVNbVxtauY6ZTtoK8imSiF1j10nCBrleil13TS-YAZCtQtE62LSjRWnFJPmx1pzR7nayf0T7YKQS0s2ZtWwOHDH3coGOcfi-YZj36ZHEYTMC8reYN1LKqleAZlRv6eJmIvT5GP5p40gz0moA-6C0BvSagQeqcQLa9f-qwdCO6_6Z_J8_Apw3AfIw_HuM6KwaLzsd1VDf55zv8BfsTmEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806456732</pqid></control><display><type>article</type><title>Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Georgiadis, Marios ; Menzel, Miriam ; Reuter, Jan A ; Born, Donald E ; Kovacevich, Sophie R ; Alvarez, Dario ; Taghavi, Hossein Moein ; Schroeter, Aileen ; Rudin, Markus ; Gao, Zirui ; Guizar-Sicairos, Manuel ; Weiss, Thomas M ; Axer, Markus ; Rajkovic, Ivan ; Zeineh, Michael M</creator><creatorcontrib>Georgiadis, Marios ; Menzel, Miriam ; Reuter, Jan A ; Born, Donald E ; Kovacevich, Sophie R ; Alvarez, Dario ; Taghavi, Hossein Moein ; Schroeter, Aileen ; Rudin, Markus ; Gao, Zirui ; Guizar-Sicairos, Manuel ; Weiss, Thomas M ; Axer, Markus ; Rajkovic, Ivan ; Zeineh, Michael M ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons.
X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods.
To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2023.04.029</identifier><identifier>PMID: 37098400</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animal and human brain ; Animals ; BASIC BIOLOGICAL SCIENCES ; Brain - diagnostic imaging ; Chlorocebus aethiops ; Crossing fibers ; Diffusion MRI ; Fiber orientation mapping ; Haplorhini ; Human hippocampus ; Humans ; Imaging myelinated axons ; Mice ; Mouse/pig/vervet monkey brain ; Scanning small-angle X-ray scattering (SAXS) ; Scattering, Small Angle ; Swine ; X-Ray Diffraction ; X-Rays</subject><ispartof>Acta biomaterialia, 2023-07, Vol.164, p.317-331</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-73a5cd6ac6db1ab7c50187413f3e5f4a23edf73f4b8f41d00493e39d4990739c3</citedby><cites>FETCH-LOGICAL-c435t-73a5cd6ac6db1ab7c50187413f3e5f4a23edf73f4b8f41d00493e39d4990739c3</cites><orcidid>0000-0003-2498-0122 ; 0000-0002-6042-7490 ; 0000-0003-0733-4559 ; 0000-0003-0430-0986 ; 0000-0002-8585-1634 ; 0000-0003-4397-4801 ; 0000-0001-5871-9331 ; 0000-0002-6940-9096 ; 0000-0002-1219-0310 ; 0000000285851634 ; 0000000304300986 ; 0000000260427490 ; 0000000212190310 ; 0000000269409096 ; 0000000158719331 ; 0000000307334559 ; 0000000343974801 ; 0000000324980122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2023.04.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37098400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgiadis, Marios</creatorcontrib><creatorcontrib>Menzel, Miriam</creatorcontrib><creatorcontrib>Reuter, Jan A</creatorcontrib><creatorcontrib>Born, Donald E</creatorcontrib><creatorcontrib>Kovacevich, Sophie R</creatorcontrib><creatorcontrib>Alvarez, Dario</creatorcontrib><creatorcontrib>Taghavi, Hossein Moein</creatorcontrib><creatorcontrib>Schroeter, Aileen</creatorcontrib><creatorcontrib>Rudin, Markus</creatorcontrib><creatorcontrib>Gao, Zirui</creatorcontrib><creatorcontrib>Guizar-Sicairos, Manuel</creatorcontrib><creatorcontrib>Weiss, Thomas M</creatorcontrib><creatorcontrib>Axer, Markus</creatorcontrib><creatorcontrib>Rajkovic, Ivan</creatorcontrib><creatorcontrib>Zeineh, Michael M</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons.
X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods.
To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
[Display omitted]</description><subject>Animal and human brain</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Brain - diagnostic imaging</subject><subject>Chlorocebus aethiops</subject><subject>Crossing fibers</subject><subject>Diffusion MRI</subject><subject>Fiber orientation mapping</subject><subject>Haplorhini</subject><subject>Human hippocampus</subject><subject>Humans</subject><subject>Imaging myelinated axons</subject><subject>Mice</subject><subject>Mouse/pig/vervet monkey brain</subject><subject>Scanning small-angle X-ray scattering (SAXS)</subject><subject>Scattering, Small Angle</subject><subject>Swine</subject><subject>X-Ray Diffraction</subject><subject>X-Rays</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtr3DAUhUVpaNK0_6AU0VUXY-fqYcveFELoIxDoJoXuhCxdTzS15alkF-bfV47TLrPSAX3nvg4h7xiUDFh9dSiNnTs_lRy4KEGWwNsX5II1qilUVTcvs1aSFwpqdk5ep3QAEA3jzStyLhS0jQS4IOZ2NHsf9tTGKaVV9L7DmKgPdJyWhDt69Ptd1uEXnnbUBEcfltEE2kWTmeXRk0YzDIUJ-wHpzyKaE03WzDPG_PmGnPVmSPj26b0kP758vr_5Vtx9_3p7c31XWCmquVDCVNbVxtauY6ZTtoK8imSiF1j10nCBrleil13TS-YAZCtQtE62LSjRWnFJPmx1pzR7nayf0T7YKQS0s2ZtWwOHDH3coGOcfi-YZj36ZHEYTMC8reYN1LKqleAZlRv6eJmIvT5GP5p40gz0moA-6C0BvSagQeqcQLa9f-qwdCO6_6Z_J8_Apw3AfIw_HuM6KwaLzsd1VDf55zv8BfsTmEw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Georgiadis, Marios</creator><creator>Menzel, Miriam</creator><creator>Reuter, Jan A</creator><creator>Born, Donald E</creator><creator>Kovacevich, Sophie R</creator><creator>Alvarez, Dario</creator><creator>Taghavi, Hossein Moein</creator><creator>Schroeter, Aileen</creator><creator>Rudin, Markus</creator><creator>Gao, Zirui</creator><creator>Guizar-Sicairos, Manuel</creator><creator>Weiss, Thomas M</creator><creator>Axer, Markus</creator><creator>Rajkovic, Ivan</creator><creator>Zeineh, Michael M</creator><general>Elsevier Ltd</general><general>Acta Materialia, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2498-0122</orcidid><orcidid>https://orcid.org/0000-0002-6042-7490</orcidid><orcidid>https://orcid.org/0000-0003-0733-4559</orcidid><orcidid>https://orcid.org/0000-0003-0430-0986</orcidid><orcidid>https://orcid.org/0000-0002-8585-1634</orcidid><orcidid>https://orcid.org/0000-0003-4397-4801</orcidid><orcidid>https://orcid.org/0000-0001-5871-9331</orcidid><orcidid>https://orcid.org/0000-0002-6940-9096</orcidid><orcidid>https://orcid.org/0000-0002-1219-0310</orcidid><orcidid>https://orcid.org/0000000285851634</orcidid><orcidid>https://orcid.org/0000000304300986</orcidid><orcidid>https://orcid.org/0000000260427490</orcidid><orcidid>https://orcid.org/0000000212190310</orcidid><orcidid>https://orcid.org/0000000269409096</orcidid><orcidid>https://orcid.org/0000000158719331</orcidid><orcidid>https://orcid.org/0000000307334559</orcidid><orcidid>https://orcid.org/0000000343974801</orcidid><orcidid>https://orcid.org/0000000324980122</orcidid></search><sort><creationdate>20230701</creationdate><title>Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering</title><author>Georgiadis, Marios ; Menzel, Miriam ; Reuter, Jan A ; Born, Donald E ; Kovacevich, Sophie R ; Alvarez, Dario ; Taghavi, Hossein Moein ; Schroeter, Aileen ; Rudin, Markus ; Gao, Zirui ; Guizar-Sicairos, Manuel ; Weiss, Thomas M ; Axer, Markus ; Rajkovic, Ivan ; Zeineh, Michael M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-73a5cd6ac6db1ab7c50187413f3e5f4a23edf73f4b8f41d00493e39d4990739c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal and human brain</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Brain - diagnostic imaging</topic><topic>Chlorocebus aethiops</topic><topic>Crossing fibers</topic><topic>Diffusion MRI</topic><topic>Fiber orientation mapping</topic><topic>Haplorhini</topic><topic>Human hippocampus</topic><topic>Humans</topic><topic>Imaging myelinated axons</topic><topic>Mice</topic><topic>Mouse/pig/vervet monkey brain</topic><topic>Scanning small-angle X-ray scattering (SAXS)</topic><topic>Scattering, Small Angle</topic><topic>Swine</topic><topic>X-Ray Diffraction</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiadis, Marios</creatorcontrib><creatorcontrib>Menzel, Miriam</creatorcontrib><creatorcontrib>Reuter, Jan A</creatorcontrib><creatorcontrib>Born, Donald E</creatorcontrib><creatorcontrib>Kovacevich, Sophie R</creatorcontrib><creatorcontrib>Alvarez, Dario</creatorcontrib><creatorcontrib>Taghavi, Hossein Moein</creatorcontrib><creatorcontrib>Schroeter, Aileen</creatorcontrib><creatorcontrib>Rudin, Markus</creatorcontrib><creatorcontrib>Gao, Zirui</creatorcontrib><creatorcontrib>Guizar-Sicairos, Manuel</creatorcontrib><creatorcontrib>Weiss, Thomas M</creatorcontrib><creatorcontrib>Axer, Markus</creatorcontrib><creatorcontrib>Rajkovic, Ivan</creatorcontrib><creatorcontrib>Zeineh, Michael M</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiadis, Marios</au><au>Menzel, Miriam</au><au>Reuter, Jan A</au><au>Born, Donald E</au><au>Kovacevich, Sophie R</au><au>Alvarez, Dario</au><au>Taghavi, Hossein Moein</au><au>Schroeter, Aileen</au><au>Rudin, Markus</au><au>Gao, Zirui</au><au>Guizar-Sicairos, Manuel</au><au>Weiss, Thomas M</au><au>Axer, Markus</au><au>Rajkovic, Ivan</au><au>Zeineh, Michael M</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>164</volume><spage>317</spage><epage>331</epage><pages>317-331</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons.
X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods.
To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37098400</pmid><doi>10.1016/j.actbio.2023.04.029</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2498-0122</orcidid><orcidid>https://orcid.org/0000-0002-6042-7490</orcidid><orcidid>https://orcid.org/0000-0003-0733-4559</orcidid><orcidid>https://orcid.org/0000-0003-0430-0986</orcidid><orcidid>https://orcid.org/0000-0002-8585-1634</orcidid><orcidid>https://orcid.org/0000-0003-4397-4801</orcidid><orcidid>https://orcid.org/0000-0001-5871-9331</orcidid><orcidid>https://orcid.org/0000-0002-6940-9096</orcidid><orcidid>https://orcid.org/0000-0002-1219-0310</orcidid><orcidid>https://orcid.org/0000000285851634</orcidid><orcidid>https://orcid.org/0000000304300986</orcidid><orcidid>https://orcid.org/0000000260427490</orcidid><orcidid>https://orcid.org/0000000212190310</orcidid><orcidid>https://orcid.org/0000000269409096</orcidid><orcidid>https://orcid.org/0000000158719331</orcidid><orcidid>https://orcid.org/0000000307334559</orcidid><orcidid>https://orcid.org/0000000343974801</orcidid><orcidid>https://orcid.org/0000000324980122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2023-07, Vol.164, p.317-331 |
issn | 1742-7061 1878-7568 1878-7568 |
language | eng |
recordid | cdi_osti_scitechconnect_1996020 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animal and human brain Animals BASIC BIOLOGICAL SCIENCES Brain - diagnostic imaging Chlorocebus aethiops Crossing fibers Diffusion MRI Fiber orientation mapping Haplorhini Human hippocampus Humans Imaging myelinated axons Mice Mouse/pig/vervet monkey brain Scanning small-angle X-ray scattering (SAXS) Scattering, Small Angle Swine X-Ray Diffraction X-Rays |
title | Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20crossing%20fibers%20in%20mouse,%20pig,%20monkey,%20and%20human%20brain%20using%20small-angle%20X-ray%20scattering&rft.jtitle=Acta%20biomaterialia&rft.au=Georgiadis,%20Marios&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-07-01&rft.volume=164&rft.spage=317&rft.epage=331&rft.pages=317-331&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2023.04.029&rft_dat=%3Cproquest_osti_%3E2806456732%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806456732&rft_id=info:pmid/37098400&rft_els_id=S1742706123002222&rfr_iscdi=true |