Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries

Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (8), p.10554-10569
Hauptverfasser: Araño, Khryslyn G., Armstrong, Beth L., Boeding, Ethan, Yang, Guang, Meyer, Harry M., Wang, Evelyna, Korkosz, Rachel, Browning, Katie L., Malkowski, Thomas, Key, Baris, Veith, Gabriel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10569
container_issue 8
container_start_page 10554
container_title ACS applied materials & interfaces
container_volume 15
creator Araño, Khryslyn G.
Armstrong, Beth L.
Boeding, Ethan
Yang, Guang
Meyer, Harry M.
Wang, Evelyna
Korkosz, Rachel
Browning, Katie L.
Malkowski, Thomas
Key, Baris
Veith, Gabriel M.
description Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si–R or Si–O–R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g–1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.
doi_str_mv 10.1021/acsami.2c16978
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1995710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777402735</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-788175cb42fce22b6e2342d7ac47f4df4f52de78bafebdb556f638163aa065bc3</originalsourceid><addsrcrecordid>eNp1kc1rFTEUxYNYbG3dupTBlQjzzHdmlvbRZwsPKmjX4U4msSl5SU0yi_avNzLP7lzdC_d3DtxzEHpP8IZgSr6AKXDwG2qIHNXwCp2RkfN-oIK-ftk5P0VvS3nAWDKKxRt0yqQaCcPyDLndEk31KULwz3bufvjgTYrdd8jVm2BL51LuruI9RNPO1xBc30Gcu90SQr-1IXTbJxN8_NUl19T9JZTG7X1_01wuoVabvS0X6MRBKPbdcZ6ju93Vz-11v7_9drP9uu-Bjar2ahiIEmbi1BlL6SQtZZzOCgxXjs-OO0Fnq4YJnJ3mSQjpJBuIZABYismwc_Rx9U2lel2Mr9bct3-iNVWTcRSK4AZ9WqHHnH4vtlR98MW0VyDatBRNlVIcU8VEQzcranIqJVunH7M_QH7SBOu_Bei1AH0soAk-HL2X6WDnF_xf4g34vAJNqB_Sklvy5X9ufwA6ao-o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777402735</pqid></control><display><type>article</type><title>Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries</title><source>American Chemical Society Journals</source><creator>Araño, Khryslyn G. ; Armstrong, Beth L. ; Boeding, Ethan ; Yang, Guang ; Meyer, Harry M. ; Wang, Evelyna ; Korkosz, Rachel ; Browning, Katie L. ; Malkowski, Thomas ; Key, Baris ; Veith, Gabriel M.</creator><creatorcontrib>Araño, Khryslyn G. ; Armstrong, Beth L. ; Boeding, Ethan ; Yang, Guang ; Meyer, Harry M. ; Wang, Evelyna ; Korkosz, Rachel ; Browning, Katie L. ; Malkowski, Thomas ; Key, Baris ; Veith, Gabriel M. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si–R or Si–O–R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g–1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c16978</identifier><identifier>PMID: 36791306</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrodes ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; functionalized silicon ; lithium-ion batteries ; Nanoparticles ; polyacrylic acid binder ; polyimide binder ; Semiconducting nanostructured materials ; Silicon ; silicon anode ; Surface chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (8), p.10554-10569</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-788175cb42fce22b6e2342d7ac47f4df4f52de78bafebdb556f638163aa065bc3</citedby><cites>FETCH-LOGICAL-a397t-788175cb42fce22b6e2342d7ac47f4df4f52de78bafebdb556f638163aa065bc3</cites><orcidid>0000-0001-8092-493X ; 0000-0001-7149-3576 ; 0000-0002-1987-1629 ; 0000-0002-5186-4461 ; 0000-0003-0583-6272 ; 0000000305836272 ; 0000000219871629 ; 0000000171493576 ; 0000000251864461 ; 000000018092493X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c16978$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c16978$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36791306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1995710$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Araño, Khryslyn G.</creatorcontrib><creatorcontrib>Armstrong, Beth L.</creatorcontrib><creatorcontrib>Boeding, Ethan</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Meyer, Harry M.</creatorcontrib><creatorcontrib>Wang, Evelyna</creatorcontrib><creatorcontrib>Korkosz, Rachel</creatorcontrib><creatorcontrib>Browning, Katie L.</creatorcontrib><creatorcontrib>Malkowski, Thomas</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si–R or Si–O–R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g–1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.</description><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>functionalized silicon</subject><subject>lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>polyacrylic acid binder</subject><subject>polyimide binder</subject><subject>Semiconducting nanostructured materials</subject><subject>Silicon</subject><subject>silicon anode</subject><subject>Surface chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rFTEUxYNYbG3dupTBlQjzzHdmlvbRZwsPKmjX4U4msSl5SU0yi_avNzLP7lzdC_d3DtxzEHpP8IZgSr6AKXDwG2qIHNXwCp2RkfN-oIK-ftk5P0VvS3nAWDKKxRt0yqQaCcPyDLndEk31KULwz3bufvjgTYrdd8jVm2BL51LuruI9RNPO1xBc30Gcu90SQr-1IXTbJxN8_NUl19T9JZTG7X1_01wuoVabvS0X6MRBKPbdcZ6ju93Vz-11v7_9drP9uu-Bjar2ahiIEmbi1BlL6SQtZZzOCgxXjs-OO0Fnq4YJnJ3mSQjpJBuIZABYismwc_Rx9U2lel2Mr9bct3-iNVWTcRSK4AZ9WqHHnH4vtlR98MW0VyDatBRNlVIcU8VEQzcranIqJVunH7M_QH7SBOu_Bei1AH0soAk-HL2X6WDnF_xf4g34vAJNqB_Sklvy5X9ufwA6ao-o</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Araño, Khryslyn G.</creator><creator>Armstrong, Beth L.</creator><creator>Boeding, Ethan</creator><creator>Yang, Guang</creator><creator>Meyer, Harry M.</creator><creator>Wang, Evelyna</creator><creator>Korkosz, Rachel</creator><creator>Browning, Katie L.</creator><creator>Malkowski, Thomas</creator><creator>Key, Baris</creator><creator>Veith, Gabriel M.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8092-493X</orcidid><orcidid>https://orcid.org/0000-0001-7149-3576</orcidid><orcidid>https://orcid.org/0000-0002-1987-1629</orcidid><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid><orcidid>https://orcid.org/0000-0003-0583-6272</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000171493576</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/000000018092493X</orcidid></search><sort><creationdate>20230301</creationdate><title>Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries</title><author>Araño, Khryslyn G. ; Armstrong, Beth L. ; Boeding, Ethan ; Yang, Guang ; Meyer, Harry M. ; Wang, Evelyna ; Korkosz, Rachel ; Browning, Katie L. ; Malkowski, Thomas ; Key, Baris ; Veith, Gabriel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-788175cb42fce22b6e2342d7ac47f4df4f52de78bafebdb556f638163aa065bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>functionalized silicon</topic><topic>lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>polyacrylic acid binder</topic><topic>polyimide binder</topic><topic>Semiconducting nanostructured materials</topic><topic>Silicon</topic><topic>silicon anode</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araño, Khryslyn G.</creatorcontrib><creatorcontrib>Armstrong, Beth L.</creatorcontrib><creatorcontrib>Boeding, Ethan</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Meyer, Harry M.</creatorcontrib><creatorcontrib>Wang, Evelyna</creatorcontrib><creatorcontrib>Korkosz, Rachel</creatorcontrib><creatorcontrib>Browning, Katie L.</creatorcontrib><creatorcontrib>Malkowski, Thomas</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araño, Khryslyn G.</au><au>Armstrong, Beth L.</au><au>Boeding, Ethan</au><au>Yang, Guang</au><au>Meyer, Harry M.</au><au>Wang, Evelyna</au><au>Korkosz, Rachel</au><au>Browning, Katie L.</au><au>Malkowski, Thomas</au><au>Key, Baris</au><au>Veith, Gabriel M.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>10554</spage><epage>10569</epage><pages>10554-10569</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si–R or Si–O–R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g–1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36791306</pmid><doi>10.1021/acsami.2c16978</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8092-493X</orcidid><orcidid>https://orcid.org/0000-0001-7149-3576</orcidid><orcidid>https://orcid.org/0000-0002-1987-1629</orcidid><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid><orcidid>https://orcid.org/0000-0003-0583-6272</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000171493576</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/000000018092493X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (8), p.10554-10569
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1995710
source American Chemical Society Journals
subjects Electrodes
ENERGY STORAGE
Energy, Environmental, and Catalysis Applications
functionalized silicon
lithium-ion batteries
Nanoparticles
polyacrylic acid binder
polyimide binder
Semiconducting nanostructured materials
Silicon
silicon anode
Surface chemistry
title Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalized%20Silicon%20Particles%20for%20Enhanced%20Half-%20and%20Full-Cell%20Cycling%20of%20Si-Based%20Li-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Aran%CC%83o,%20Khryslyn%20G.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-03-01&rft.volume=15&rft.issue=8&rft.spage=10554&rft.epage=10569&rft.pages=10554-10569&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c16978&rft_dat=%3Cproquest_osti_%3E2777402735%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777402735&rft_id=info:pmid/36791306&rfr_iscdi=true