PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-04, Vol.14 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Nature communications |
container_volume | 14 |
creator | Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. |
description | Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1994378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994378</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19943783</originalsourceid><addsrcrecordid>eNqNjbFuwkAMhk8VSEWUd7C6RyIkEmSGVowM7Mi5OOBy8aHzZegr8NR4YGDEi39Z3__5w81Wy7osyvWqmrzkT7dQ_VvaVE25qeuZux8IrzvysaMEJNgGUhjQX1gIAmESlnPRolIHA2VsY-BMgCIxY-YoFjtA78eEdr-l2HOwCrDAMIbMHQ8kaiAG86qC3sjnFE2W_k2JOiYyJOuXm_YYlBbPPXffvz_H7b6Imvmk3v76i48i1j-VTVNX6031FvQA91FYeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Bilbao, Aivett ; Munoz, Nathalie ; Kim, Joonhoon ; Orton, Daniel J. ; Gao, Yuqian ; Poorey, Kunal ; Pomraning, Kyle R. ; Weitz, Karl ; Burnet, Meagan ; Nicora, Carrie D. ; Wilton, Rosemarie ; Deng, Shuang ; Dai, Ziyu ; Oksen, Ethan ; Gee, Aaron ; Fasani, Rick A. ; Tsalenko, Anya ; Tanjore, Deepti ; Gardner, James ; Smith, Richard D. ; Michener, Joshua K. ; Gladden, John M. ; Baker, Erin S. ; Petzold, Christopher J. ; Kim, Young-Mo ; Apffel, Alex ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E.</creator><creatorcontrib>Bilbao, Aivett ; Munoz, Nathalie ; Kim, Joonhoon ; Orton, Daniel J. ; Gao, Yuqian ; Poorey, Kunal ; Pomraning, Kyle R. ; Weitz, Karl ; Burnet, Meagan ; Nicora, Carrie D. ; Wilton, Rosemarie ; Deng, Shuang ; Dai, Ziyu ; Oksen, Ethan ; Gee, Aaron ; Fasani, Rick A. ; Tsalenko, Anya ; Tanjore, Deepti ; Gardner, James ; Smith, Richard D. ; Michener, Joshua K. ; Gladden, John M. ; Baker, Erin S. ; Petzold, Christopher J. ; Kim, Young-Mo ; Apffel, Alex ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Data processing ; data-independent acquisition ; HILIC ; ion mobility spectrometry ; Machine learning ; mass spectrometry ; metabolomics ; synthetic biology</subject><ispartof>Nature communications, 2023-04, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000289727593 ; 0000000324619548 ; 0000000227233512 ; 0000000282705228 ; 0000000223812349 ; 0000000227224149 ; 0000000177127024 ; 0000000329858249 ; 0000000152462213 ; 0000000316464515 ; 0000000323242881 ; 0000000202536859 ; 0000000323028180 ; 0000000169039104 ; 0000000274251828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1994378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilbao, Aivett</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Orton, Daniel J.</creatorcontrib><creatorcontrib>Gao, Yuqian</creatorcontrib><creatorcontrib>Poorey, Kunal</creatorcontrib><creatorcontrib>Pomraning, Kyle R.</creatorcontrib><creatorcontrib>Weitz, Karl</creatorcontrib><creatorcontrib>Burnet, Meagan</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Wilton, Rosemarie</creatorcontrib><creatorcontrib>Deng, Shuang</creatorcontrib><creatorcontrib>Dai, Ziyu</creatorcontrib><creatorcontrib>Oksen, Ethan</creatorcontrib><creatorcontrib>Gee, Aaron</creatorcontrib><creatorcontrib>Fasani, Rick A.</creatorcontrib><creatorcontrib>Tsalenko, Anya</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Gardner, James</creatorcontrib><creatorcontrib>Smith, Richard D.</creatorcontrib><creatorcontrib>Michener, Joshua K.</creatorcontrib><creatorcontrib>Gladden, John M.</creatorcontrib><creatorcontrib>Baker, Erin S.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Apffel, Alex</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements</title><title>Nature communications</title><description>Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Data processing</subject><subject>data-independent acquisition</subject><subject>HILIC</subject><subject>ion mobility spectrometry</subject><subject>Machine learning</subject><subject>mass spectrometry</subject><subject>metabolomics</subject><subject>synthetic biology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjbFuwkAMhk8VSEWUd7C6RyIkEmSGVowM7Mi5OOBy8aHzZegr8NR4YGDEi39Z3__5w81Wy7osyvWqmrzkT7dQ_VvaVE25qeuZux8IrzvysaMEJNgGUhjQX1gIAmESlnPRolIHA2VsY-BMgCIxY-YoFjtA78eEdr-l2HOwCrDAMIbMHQ8kaiAG86qC3sjnFE2W_k2JOiYyJOuXm_YYlBbPPXffvz_H7b6Imvmk3v76i48i1j-VTVNX6031FvQA91FYeA</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Bilbao, Aivett</creator><creator>Munoz, Nathalie</creator><creator>Kim, Joonhoon</creator><creator>Orton, Daniel J.</creator><creator>Gao, Yuqian</creator><creator>Poorey, Kunal</creator><creator>Pomraning, Kyle R.</creator><creator>Weitz, Karl</creator><creator>Burnet, Meagan</creator><creator>Nicora, Carrie D.</creator><creator>Wilton, Rosemarie</creator><creator>Deng, Shuang</creator><creator>Dai, Ziyu</creator><creator>Oksen, Ethan</creator><creator>Gee, Aaron</creator><creator>Fasani, Rick A.</creator><creator>Tsalenko, Anya</creator><creator>Tanjore, Deepti</creator><creator>Gardner, James</creator><creator>Smith, Richard D.</creator><creator>Michener, Joshua K.</creator><creator>Gladden, John M.</creator><creator>Baker, Erin S.</creator><creator>Petzold, Christopher J.</creator><creator>Kim, Young-Mo</creator><creator>Apffel, Alex</creator><creator>Magnuson, Jon K.</creator><creator>Burnum-Johnson, Kristin E.</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000289727593</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000227233512</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000177127024</orcidid><orcidid>https://orcid.org/0000000329858249</orcidid><orcidid>https://orcid.org/0000000152462213</orcidid><orcidid>https://orcid.org/0000000316464515</orcidid><orcidid>https://orcid.org/0000000323242881</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000323028180</orcidid><orcidid>https://orcid.org/0000000169039104</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid></search><sort><creationdate>20230428</creationdate><title>PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements</title><author>Bilbao, Aivett ; Munoz, Nathalie ; Kim, Joonhoon ; Orton, Daniel J. ; Gao, Yuqian ; Poorey, Kunal ; Pomraning, Kyle R. ; Weitz, Karl ; Burnet, Meagan ; Nicora, Carrie D. ; Wilton, Rosemarie ; Deng, Shuang ; Dai, Ziyu ; Oksen, Ethan ; Gee, Aaron ; Fasani, Rick A. ; Tsalenko, Anya ; Tanjore, Deepti ; Gardner, James ; Smith, Richard D. ; Michener, Joshua K. ; Gladden, John M. ; Baker, Erin S. ; Petzold, Christopher J. ; Kim, Young-Mo ; Apffel, Alex ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19943783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Data processing</topic><topic>data-independent acquisition</topic><topic>HILIC</topic><topic>ion mobility spectrometry</topic><topic>Machine learning</topic><topic>mass spectrometry</topic><topic>metabolomics</topic><topic>synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilbao, Aivett</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Orton, Daniel J.</creatorcontrib><creatorcontrib>Gao, Yuqian</creatorcontrib><creatorcontrib>Poorey, Kunal</creatorcontrib><creatorcontrib>Pomraning, Kyle R.</creatorcontrib><creatorcontrib>Weitz, Karl</creatorcontrib><creatorcontrib>Burnet, Meagan</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Wilton, Rosemarie</creatorcontrib><creatorcontrib>Deng, Shuang</creatorcontrib><creatorcontrib>Dai, Ziyu</creatorcontrib><creatorcontrib>Oksen, Ethan</creatorcontrib><creatorcontrib>Gee, Aaron</creatorcontrib><creatorcontrib>Fasani, Rick A.</creatorcontrib><creatorcontrib>Tsalenko, Anya</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Gardner, James</creatorcontrib><creatorcontrib>Smith, Richard D.</creatorcontrib><creatorcontrib>Michener, Joshua K.</creatorcontrib><creatorcontrib>Gladden, John M.</creatorcontrib><creatorcontrib>Baker, Erin S.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Apffel, Alex</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilbao, Aivett</au><au>Munoz, Nathalie</au><au>Kim, Joonhoon</au><au>Orton, Daniel J.</au><au>Gao, Yuqian</au><au>Poorey, Kunal</au><au>Pomraning, Kyle R.</au><au>Weitz, Karl</au><au>Burnet, Meagan</au><au>Nicora, Carrie D.</au><au>Wilton, Rosemarie</au><au>Deng, Shuang</au><au>Dai, Ziyu</au><au>Oksen, Ethan</au><au>Gee, Aaron</au><au>Fasani, Rick A.</au><au>Tsalenko, Anya</au><au>Tanjore, Deepti</au><au>Gardner, James</au><au>Smith, Richard D.</au><au>Michener, Joshua K.</au><au>Gladden, John M.</au><au>Baker, Erin S.</au><au>Petzold, Christopher J.</au><au>Kim, Young-Mo</au><au>Apffel, Alex</au><au>Magnuson, Jon K.</au><au>Burnum-Johnson, Kristin E.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements</atitle><jtitle>Nature communications</jtitle><date>2023-04-28</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000000289727593</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000227233512</orcidid><orcidid>https://orcid.org/0000000282705228</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000177127024</orcidid><orcidid>https://orcid.org/0000000329858249</orcidid><orcidid>https://orcid.org/0000000152462213</orcidid><orcidid>https://orcid.org/0000000316464515</orcidid><orcidid>https://orcid.org/0000000323242881</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000323028180</orcidid><orcidid>https://orcid.org/0000000169039104</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-04, Vol.14 (1) |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_osti_scitechconnect_1994378 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | BASIC BIOLOGICAL SCIENCES Data processing data-independent acquisition HILIC ion mobility spectrometry Machine learning mass spectrometry metabolomics synthetic biology |
title | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PeakDecoder%20enables%20machine%20learning-based%20metabolite%20annotation%20and%20accurate%20profiling%20in%20multidimensional%20mass%20spectrometry%20measurements&rft.jtitle=Nature%20communications&rft.au=Bilbao,%20Aivett&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-04-28&rft.volume=14&rft.issue=1&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/&rft_dat=%3Costi%3E1994378%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |