Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways
Buildup of CO2 in the atmosphere is a major contributor to global climate change, while the current technologies for CO2 capture and sequestration are energy consuming and the current CO2 conversion technologies either require expensive catalysts or have low conversion efficiency. Here, we report an...
Gespeichert in:
Veröffentlicht in: | Environmental technology & innovation 2023-11, Vol.32 (C), p.103279, Article 103279 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 103279 |
container_title | Environmental technology & innovation |
container_volume | 32 |
creator | Wang, Xianfeng Bao, Zhenghong Akhmedov, Novruz G. Hopkinson, David Hoffman, James Duan, Yuhua Egbebi, Adefemi Resnik, Kevin Li, Bingyun |
description | Buildup of CO2 in the atmosphere is a major contributor to global climate change, while the current technologies for CO2 capture and sequestration are energy consuming and the current CO2 conversion technologies either require expensive catalysts or have low conversion efficiency. Here, we report an amino acid (AA) based nanotechnology that absorbs and converts CO2 from simulated flue gases into new nanomaterials. Our computational and experimental studies have identified unique AAs capturing CO2 as bicarbonate nanomaterials, and have shown that the formation of bicarbonate nanomaterials is AA-structure dependent. The unique AA solvents have further demonstrated faster kinetics and higher CO2 absorption capacity compared to the state-of-the-art solvent technology (i.e., 30 wt% monoethanolamine). Our innovative technology offers a first-of-its-kind system that provides three flexible, switchable product pathways for CO2 capture (i.e., use of the nanomaterials as a commercially valuable product, regenerating the CO2-rich nanomaterials for geological sequestration or for use in enhanced oil recovery, or sequestering the nanomaterials in a solid form). Worldwide demands for CO2 emission reduction and new nanomaterial production continue to grow, the technology reported here is a highly efficient and cost-effective approach in cutting CO2 emission into the atmosphere.
•A completely new concept with potential flexible pathways of a single solvent system was developed for CO2 management.•Gaseous CO2 was converted into innovative nanofibers and nanoflowers.•The first approach produces bicarbonate nanofibers.•The formation of nanomaterials is amino acid-structure dependent.
[Display omitted] |
doi_str_mv | 10.1016/j.eti.2023.103279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1992421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352186423002754</els_id><sourcerecordid>2887635480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-10a280aecf5d74c72c2b80bbbb38b3f3965962e32ef5bd9c6e8b1153d376f8bb3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEEgj4AWwWE0uLPxLHEROq-JIqdYHZcpwLuSq1i-1S9d_jKgxMeLk76Xmt9-4tihtG54wyeb-eQ8I5p1zkWfC6OSkuuKj4jClZnv7pz4vrGNeUZpJVspIXhf9w-LUD0qIf_SdaMxKzQeeJsdhFknbBkcWKE9hgjOgdQZc8cf4bRuKM8xuTIKAZI9ljGkgaAgCJubeDaUcg2-C7nU1ka9KwN4d4VZz1mYbr33pZfDw_vS9eZ8vVy9vicTmzJaVpxqjhihqwfdXVpa255a2ibX5CtaIXjawayUFw6Ku2a6wE1TJWiU7UsleZuixup399TKijxQR2sN45sEmzpuElZxm6m6DsMh8hJp23tDCOxoHfRc2VqqWoSkUzyibUBh9jgF5vA25MOGhG9TEEvdY5BH0MQU8hZM3DpIG86DdCOPoAZ6HDcLTRefxH_QOtHpC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887635480</pqid></control><display><type>article</type><title>Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xianfeng ; Bao, Zhenghong ; Akhmedov, Novruz G. ; Hopkinson, David ; Hoffman, James ; Duan, Yuhua ; Egbebi, Adefemi ; Resnik, Kevin ; Li, Bingyun</creator><creatorcontrib>Wang, Xianfeng ; Bao, Zhenghong ; Akhmedov, Novruz G. ; Hopkinson, David ; Hoffman, James ; Duan, Yuhua ; Egbebi, Adefemi ; Resnik, Kevin ; Li, Bingyun</creatorcontrib><description>Buildup of CO2 in the atmosphere is a major contributor to global climate change, while the current technologies for CO2 capture and sequestration are energy consuming and the current CO2 conversion technologies either require expensive catalysts or have low conversion efficiency. Here, we report an amino acid (AA) based nanotechnology that absorbs and converts CO2 from simulated flue gases into new nanomaterials. Our computational and experimental studies have identified unique AAs capturing CO2 as bicarbonate nanomaterials, and have shown that the formation of bicarbonate nanomaterials is AA-structure dependent. The unique AA solvents have further demonstrated faster kinetics and higher CO2 absorption capacity compared to the state-of-the-art solvent technology (i.e., 30 wt% monoethanolamine). Our innovative technology offers a first-of-its-kind system that provides three flexible, switchable product pathways for CO2 capture (i.e., use of the nanomaterials as a commercially valuable product, regenerating the CO2-rich nanomaterials for geological sequestration or for use in enhanced oil recovery, or sequestering the nanomaterials in a solid form). Worldwide demands for CO2 emission reduction and new nanomaterial production continue to grow, the technology reported here is a highly efficient and cost-effective approach in cutting CO2 emission into the atmosphere.
•A completely new concept with potential flexible pathways of a single solvent system was developed for CO2 management.•Gaseous CO2 was converted into innovative nanofibers and nanoflowers.•The first approach produces bicarbonate nanofibers.•The formation of nanomaterials is amino acid-structure dependent.
[Display omitted]</description><identifier>ISSN: 2352-1864</identifier><identifier>EISSN: 2352-1864</identifier><identifier>DOI: 10.1016/j.eti.2023.103279</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>absorption ; Amino acid ; amino acids ; Bicarbonate ; bicarbonates ; Carbon capture ; Carbon conversion ; carbon dioxide ; climate change ; CO2 ; cost effectiveness ; energy ; environmental technology ; ethanolamine ; Nanomaterial ; nanomaterials ; oils ; solvents</subject><ispartof>Environmental technology & innovation, 2023-11, Vol.32 (C), p.103279, Article 103279</ispartof><rights>2023 The Authors</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-10a280aecf5d74c72c2b80bbbb38b3f3965962e32ef5bd9c6e8b1153d376f8bb3</citedby><cites>FETCH-LOGICAL-c400t-10a280aecf5d74c72c2b80bbbb38b3f3965962e32ef5bd9c6e8b1153d376f8bb3</cites><orcidid>0000-0002-5766-5666 ; 0000000257665666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1992421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xianfeng</creatorcontrib><creatorcontrib>Bao, Zhenghong</creatorcontrib><creatorcontrib>Akhmedov, Novruz G.</creatorcontrib><creatorcontrib>Hopkinson, David</creatorcontrib><creatorcontrib>Hoffman, James</creatorcontrib><creatorcontrib>Duan, Yuhua</creatorcontrib><creatorcontrib>Egbebi, Adefemi</creatorcontrib><creatorcontrib>Resnik, Kevin</creatorcontrib><creatorcontrib>Li, Bingyun</creatorcontrib><title>Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways</title><title>Environmental technology & innovation</title><description>Buildup of CO2 in the atmosphere is a major contributor to global climate change, while the current technologies for CO2 capture and sequestration are energy consuming and the current CO2 conversion technologies either require expensive catalysts or have low conversion efficiency. Here, we report an amino acid (AA) based nanotechnology that absorbs and converts CO2 from simulated flue gases into new nanomaterials. Our computational and experimental studies have identified unique AAs capturing CO2 as bicarbonate nanomaterials, and have shown that the formation of bicarbonate nanomaterials is AA-structure dependent. The unique AA solvents have further demonstrated faster kinetics and higher CO2 absorption capacity compared to the state-of-the-art solvent technology (i.e., 30 wt% monoethanolamine). Our innovative technology offers a first-of-its-kind system that provides three flexible, switchable product pathways for CO2 capture (i.e., use of the nanomaterials as a commercially valuable product, regenerating the CO2-rich nanomaterials for geological sequestration or for use in enhanced oil recovery, or sequestering the nanomaterials in a solid form). Worldwide demands for CO2 emission reduction and new nanomaterial production continue to grow, the technology reported here is a highly efficient and cost-effective approach in cutting CO2 emission into the atmosphere.
•A completely new concept with potential flexible pathways of a single solvent system was developed for CO2 management.•Gaseous CO2 was converted into innovative nanofibers and nanoflowers.•The first approach produces bicarbonate nanofibers.•The formation of nanomaterials is amino acid-structure dependent.
[Display omitted]</description><subject>absorption</subject><subject>Amino acid</subject><subject>amino acids</subject><subject>Bicarbonate</subject><subject>bicarbonates</subject><subject>Carbon capture</subject><subject>Carbon conversion</subject><subject>carbon dioxide</subject><subject>climate change</subject><subject>CO2</subject><subject>cost effectiveness</subject><subject>energy</subject><subject>environmental technology</subject><subject>ethanolamine</subject><subject>Nanomaterial</subject><subject>nanomaterials</subject><subject>oils</subject><subject>solvents</subject><issn>2352-1864</issn><issn>2352-1864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PwzAQhiMEEgj4AWwWE0uLPxLHEROq-JIqdYHZcpwLuSq1i-1S9d_jKgxMeLk76Xmt9-4tihtG54wyeb-eQ8I5p1zkWfC6OSkuuKj4jClZnv7pz4vrGNeUZpJVspIXhf9w-LUD0qIf_SdaMxKzQeeJsdhFknbBkcWKE9hgjOgdQZc8cf4bRuKM8xuTIKAZI9ljGkgaAgCJubeDaUcg2-C7nU1ka9KwN4d4VZz1mYbr33pZfDw_vS9eZ8vVy9vicTmzJaVpxqjhihqwfdXVpa255a2ibX5CtaIXjawayUFw6Ku2a6wE1TJWiU7UsleZuixup399TKijxQR2sN45sEmzpuElZxm6m6DsMh8hJp23tDCOxoHfRc2VqqWoSkUzyibUBh9jgF5vA25MOGhG9TEEvdY5BH0MQU8hZM3DpIG86DdCOPoAZ6HDcLTRefxH_QOtHpC4</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Wang, Xianfeng</creator><creator>Bao, Zhenghong</creator><creator>Akhmedov, Novruz G.</creator><creator>Hopkinson, David</creator><creator>Hoffman, James</creator><creator>Duan, Yuhua</creator><creator>Egbebi, Adefemi</creator><creator>Resnik, Kevin</creator><creator>Li, Bingyun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5766-5666</orcidid><orcidid>https://orcid.org/0000000257665666</orcidid></search><sort><creationdate>202311</creationdate><title>Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways</title><author>Wang, Xianfeng ; Bao, Zhenghong ; Akhmedov, Novruz G. ; Hopkinson, David ; Hoffman, James ; Duan, Yuhua ; Egbebi, Adefemi ; Resnik, Kevin ; Li, Bingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-10a280aecf5d74c72c2b80bbbb38b3f3965962e32ef5bd9c6e8b1153d376f8bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>Amino acid</topic><topic>amino acids</topic><topic>Bicarbonate</topic><topic>bicarbonates</topic><topic>Carbon capture</topic><topic>Carbon conversion</topic><topic>carbon dioxide</topic><topic>climate change</topic><topic>CO2</topic><topic>cost effectiveness</topic><topic>energy</topic><topic>environmental technology</topic><topic>ethanolamine</topic><topic>Nanomaterial</topic><topic>nanomaterials</topic><topic>oils</topic><topic>solvents</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianfeng</creatorcontrib><creatorcontrib>Bao, Zhenghong</creatorcontrib><creatorcontrib>Akhmedov, Novruz G.</creatorcontrib><creatorcontrib>Hopkinson, David</creatorcontrib><creatorcontrib>Hoffman, James</creatorcontrib><creatorcontrib>Duan, Yuhua</creatorcontrib><creatorcontrib>Egbebi, Adefemi</creatorcontrib><creatorcontrib>Resnik, Kevin</creatorcontrib><creatorcontrib>Li, Bingyun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental technology & innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianfeng</au><au>Bao, Zhenghong</au><au>Akhmedov, Novruz G.</au><au>Hopkinson, David</au><au>Hoffman, James</au><au>Duan, Yuhua</au><au>Egbebi, Adefemi</au><au>Resnik, Kevin</au><au>Li, Bingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways</atitle><jtitle>Environmental technology & innovation</jtitle><date>2023-11</date><risdate>2023</risdate><volume>32</volume><issue>C</issue><spage>103279</spage><pages>103279-</pages><artnum>103279</artnum><issn>2352-1864</issn><eissn>2352-1864</eissn><abstract>Buildup of CO2 in the atmosphere is a major contributor to global climate change, while the current technologies for CO2 capture and sequestration are energy consuming and the current CO2 conversion technologies either require expensive catalysts or have low conversion efficiency. Here, we report an amino acid (AA) based nanotechnology that absorbs and converts CO2 from simulated flue gases into new nanomaterials. Our computational and experimental studies have identified unique AAs capturing CO2 as bicarbonate nanomaterials, and have shown that the formation of bicarbonate nanomaterials is AA-structure dependent. The unique AA solvents have further demonstrated faster kinetics and higher CO2 absorption capacity compared to the state-of-the-art solvent technology (i.e., 30 wt% monoethanolamine). Our innovative technology offers a first-of-its-kind system that provides three flexible, switchable product pathways for CO2 capture (i.e., use of the nanomaterials as a commercially valuable product, regenerating the CO2-rich nanomaterials for geological sequestration or for use in enhanced oil recovery, or sequestering the nanomaterials in a solid form). Worldwide demands for CO2 emission reduction and new nanomaterial production continue to grow, the technology reported here is a highly efficient and cost-effective approach in cutting CO2 emission into the atmosphere.
•A completely new concept with potential flexible pathways of a single solvent system was developed for CO2 management.•Gaseous CO2 was converted into innovative nanofibers and nanoflowers.•The first approach produces bicarbonate nanofibers.•The formation of nanomaterials is amino acid-structure dependent.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eti.2023.103279</doi><orcidid>https://orcid.org/0000-0002-5766-5666</orcidid><orcidid>https://orcid.org/0000000257665666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-1864 |
ispartof | Environmental technology & innovation, 2023-11, Vol.32 (C), p.103279, Article 103279 |
issn | 2352-1864 2352-1864 |
language | eng |
recordid | cdi_osti_scitechconnect_1992421 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | absorption Amino acid amino acids Bicarbonate bicarbonates Carbon capture Carbon conversion carbon dioxide climate change CO2 cost effectiveness energy environmental technology ethanolamine Nanomaterial nanomaterials oils solvents |
title | Unique biological amino acids turn CO2 emission into novel nanomaterials with three switchable product pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20biological%20amino%20acids%20turn%20CO2%20emission%20into%20novel%20nanomaterials%20with%20three%20switchable%20product%20pathways&rft.jtitle=Environmental%20technology%20&%20innovation&rft.au=Wang,%20Xianfeng&rft.date=2023-11&rft.volume=32&rft.issue=C&rft.spage=103279&rft.pages=103279-&rft.artnum=103279&rft.issn=2352-1864&rft.eissn=2352-1864&rft_id=info:doi/10.1016/j.eti.2023.103279&rft_dat=%3Cproquest_osti_%3E2887635480%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887635480&rft_id=info:pmid/&rft_els_id=S2352186423002754&rfr_iscdi=true |