Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells
State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO co...
Gespeichert in:
Veröffentlicht in: | Materials science in semiconductor processing 2023-06, Vol.165 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Materials science in semiconductor processing |
container_volume | 165 |
creator | Anderson, Caroline Lima Guthrey, Harvey L. Nemeth, William Jiang, Chun-Sheng Page, Matthew R. Stradins, Paul Agarwal, S. |
description | State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1992302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992302</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19923023</originalsourceid><addsrcrecordid>eNqNjsFKA0EQRAcxYDT-QyN7XZzZjXH3LAZPGoj3ZehMsi3NTNhug3Py1zMBP8BTFcWroq7M3HXPbb20nbsuvl31dWetuzG3Il_W2qfGrebmd0NxTBwgcECdCD0Dprj7RqUTaQaKcEycccqinpligC1BisCpsJwhKI5hV8L3asjV45Y-quGngqMXoZNXiofLoHpUgX2aLm1J7CfAwCwLM9t7lnD_p3fmYf36-fJWJ1EaBEkDjqUfy7vB9X3T2qb9F3QGi95Rbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S.</creator><creatorcontrib>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</description><identifier>ISSN: 1369-8001</identifier><identifier>EISSN: 1873-4081</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>amorphous Si ; EBIC ; hole-selective contact ; MATERIALS SCIENCE ; metal-assisted chemical etching ; pinholes ; poly-Si passivating contacts ; SOLAR ENERGY ; SSRM</subject><ispartof>Materials science in semiconductor processing, 2023-06, Vol.165</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000315373611 ; 0000000315743379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1992302$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Caroline Lima</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Jiang, Chun-Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><title>Materials science in semiconductor processing</title><description>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</description><subject>amorphous Si</subject><subject>EBIC</subject><subject>hole-selective contact</subject><subject>MATERIALS SCIENCE</subject><subject>metal-assisted chemical etching</subject><subject>pinholes</subject><subject>poly-Si passivating contacts</subject><subject>SOLAR ENERGY</subject><subject>SSRM</subject><issn>1369-8001</issn><issn>1873-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjsFKA0EQRAcxYDT-QyN7XZzZjXH3LAZPGoj3ZehMsi3NTNhug3Py1zMBP8BTFcWroq7M3HXPbb20nbsuvl31dWetuzG3Il_W2qfGrebmd0NxTBwgcECdCD0Dprj7RqUTaQaKcEycccqinpligC1BisCpsJwhKI5hV8L3asjV45Y-quGngqMXoZNXiofLoHpUgX2aLm1J7CfAwCwLM9t7lnD_p3fmYf36-fJWJ1EaBEkDjqUfy7vB9X3T2qb9F3QGi95Rbw</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Anderson, Caroline Lima</creator><creator>Guthrey, Harvey L.</creator><creator>Nemeth, William</creator><creator>Jiang, Chun-Sheng</creator><creator>Page, Matthew R.</creator><creator>Stradins, Paul</creator><creator>Agarwal, S.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid></search><sort><creationdate>20230613</creationdate><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><author>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19923023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amorphous Si</topic><topic>EBIC</topic><topic>hole-selective contact</topic><topic>MATERIALS SCIENCE</topic><topic>metal-assisted chemical etching</topic><topic>pinholes</topic><topic>poly-Si passivating contacts</topic><topic>SOLAR ENERGY</topic><topic>SSRM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Caroline Lima</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Jiang, Chun-Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science in semiconductor processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Caroline Lima</au><au>Guthrey, Harvey L.</au><au>Nemeth, William</au><au>Jiang, Chun-Sheng</au><au>Page, Matthew R.</au><au>Stradins, Paul</au><au>Agarwal, S.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</atitle><jtitle>Materials science in semiconductor processing</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>165</volume><issn>1369-8001</issn><eissn>1873-4081</eissn><abstract>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-8001 |
ispartof | Materials science in semiconductor processing, 2023-06, Vol.165 |
issn | 1369-8001 1873-4081 |
language | eng |
recordid | cdi_osti_scitechconnect_1992302 |
source | Elsevier ScienceDirect Journals |
subjects | amorphous Si EBIC hole-selective contact MATERIALS SCIENCE metal-assisted chemical etching pinholes poly-Si passivating contacts SOLAR ENERGY SSRM |
title | Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pinhole%20electrical%20conductivity%20in%20polycrystalline%20Si%20on%20locally%20etched%20SiN$_y$/SiO$_x$%20passivating%20contacts%20for%20Si%20solar%20cells&rft.jtitle=Materials%20science%20in%20semiconductor%20processing&rft.au=Anderson,%20Caroline%20Lima&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2023-06-13&rft.volume=165&rft.issn=1369-8001&rft.eissn=1873-4081&rft_id=info:doi/&rft_dat=%3Costi%3E1992302%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |