Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells

State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science in semiconductor processing 2023-06, Vol.165
Hauptverfasser: Anderson, Caroline Lima, Guthrey, Harvey L., Nemeth, William, Jiang, Chun-Sheng, Page, Matthew R., Stradins, Paul, Agarwal, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Materials science in semiconductor processing
container_volume 165
creator Anderson, Caroline Lima
Guthrey, Harvey L.
Nemeth, William
Jiang, Chun-Sheng
Page, Matthew R.
Stradins, Paul
Agarwal, S.
description State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1992302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992302</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19923023</originalsourceid><addsrcrecordid>eNqNjsFKA0EQRAcxYDT-QyN7XZzZjXH3LAZPGoj3ZehMsi3NTNhug3Py1zMBP8BTFcWroq7M3HXPbb20nbsuvl31dWetuzG3Il_W2qfGrebmd0NxTBwgcECdCD0Dprj7RqUTaQaKcEycccqinpligC1BisCpsJwhKI5hV8L3asjV45Y-quGngqMXoZNXiofLoHpUgX2aLm1J7CfAwCwLM9t7lnD_p3fmYf36-fJWJ1EaBEkDjqUfy7vB9X3T2qb9F3QGi95Rbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S.</creator><creatorcontrib>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</description><identifier>ISSN: 1369-8001</identifier><identifier>EISSN: 1873-4081</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>amorphous Si ; EBIC ; hole-selective contact ; MATERIALS SCIENCE ; metal-assisted chemical etching ; pinholes ; poly-Si passivating contacts ; SOLAR ENERGY ; SSRM</subject><ispartof>Materials science in semiconductor processing, 2023-06, Vol.165</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000315373611 ; 0000000315743379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1992302$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Caroline Lima</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Jiang, Chun-Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><title>Materials science in semiconductor processing</title><description>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</description><subject>amorphous Si</subject><subject>EBIC</subject><subject>hole-selective contact</subject><subject>MATERIALS SCIENCE</subject><subject>metal-assisted chemical etching</subject><subject>pinholes</subject><subject>poly-Si passivating contacts</subject><subject>SOLAR ENERGY</subject><subject>SSRM</subject><issn>1369-8001</issn><issn>1873-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjsFKA0EQRAcxYDT-QyN7XZzZjXH3LAZPGoj3ZehMsi3NTNhug3Py1zMBP8BTFcWroq7M3HXPbb20nbsuvl31dWetuzG3Il_W2qfGrebmd0NxTBwgcECdCD0Dprj7RqUTaQaKcEycccqinpligC1BisCpsJwhKI5hV8L3asjV45Y-quGngqMXoZNXiofLoHpUgX2aLm1J7CfAwCwLM9t7lnD_p3fmYf36-fJWJ1EaBEkDjqUfy7vB9X3T2qb9F3QGi95Rbw</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Anderson, Caroline Lima</creator><creator>Guthrey, Harvey L.</creator><creator>Nemeth, William</creator><creator>Jiang, Chun-Sheng</creator><creator>Page, Matthew R.</creator><creator>Stradins, Paul</creator><creator>Agarwal, S.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid></search><sort><creationdate>20230613</creationdate><title>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</title><author>Anderson, Caroline Lima ; Guthrey, Harvey L. ; Nemeth, William ; Jiang, Chun-Sheng ; Page, Matthew R. ; Stradins, Paul ; Agarwal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19923023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amorphous Si</topic><topic>EBIC</topic><topic>hole-selective contact</topic><topic>MATERIALS SCIENCE</topic><topic>metal-assisted chemical etching</topic><topic>pinholes</topic><topic>poly-Si passivating contacts</topic><topic>SOLAR ENERGY</topic><topic>SSRM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Caroline Lima</creatorcontrib><creatorcontrib>Guthrey, Harvey L.</creatorcontrib><creatorcontrib>Nemeth, William</creatorcontrib><creatorcontrib>Jiang, Chun-Sheng</creatorcontrib><creatorcontrib>Page, Matthew R.</creatorcontrib><creatorcontrib>Stradins, Paul</creatorcontrib><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science in semiconductor processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Caroline Lima</au><au>Guthrey, Harvey L.</au><au>Nemeth, William</au><au>Jiang, Chun-Sheng</au><au>Page, Matthew R.</au><au>Stradins, Paul</au><au>Agarwal, S.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells</atitle><jtitle>Materials science in semiconductor processing</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>165</volume><issn>1369-8001</issn><eissn>1873-4081</eissn><abstract>State-of-the-art monocrystalline Si (c-Si) solar cells require passivating contacts to achieve a high degree of charge-carrier separation and collection. In this work, we focus on boron-doped polycrystalline Si on locally etched silicon nitride/silicon oxide (PLENO) passivating contacts. In PLENO contacts, excellent surface passivation is provided by the ~10 nm dielectric bilayer, while pinholes in the dielectric bilayer, that are filled with doped polycrystalline Si, provide charge-carrier selectivity and transport. During PLENO fabrication, etch undercut in the dielectric bilayer occurs. Here, using electrical characterization and microscopies, we show that undercut causes pinholes to be electrically resistive in PLENO. A processing sequence that eliminates the undercut in the final PLENO structure results in electrically conductive pinholes with low contact resistivity.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000315373611</orcidid><orcidid>https://orcid.org/0000000315743379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-8001
ispartof Materials science in semiconductor processing, 2023-06, Vol.165
issn 1369-8001
1873-4081
language eng
recordid cdi_osti_scitechconnect_1992302
source Elsevier ScienceDirect Journals
subjects amorphous Si
EBIC
hole-selective contact
MATERIALS SCIENCE
metal-assisted chemical etching
pinholes
poly-Si passivating contacts
SOLAR ENERGY
SSRM
title Pinhole electrical conductivity in polycrystalline Si on locally etched SiN$_y$/SiO$_x$ passivating contacts for Si solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pinhole%20electrical%20conductivity%20in%20polycrystalline%20Si%20on%20locally%20etched%20SiN$_y$/SiO$_x$%20passivating%20contacts%20for%20Si%20solar%20cells&rft.jtitle=Materials%20science%20in%20semiconductor%20processing&rft.au=Anderson,%20Caroline%20Lima&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2023-06-13&rft.volume=165&rft.issn=1369-8001&rft.eissn=1873-4081&rft_id=info:doi/&rft_dat=%3Costi%3E1992302%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true