Microphysically modified magnetosonic modes in collisionless, high-β plasmas

With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high-$\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-inst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2023-05, Vol.89 (3), Article 905890303
Hauptverfasser: Majeski, S., Kunz, M.W., Squire, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of plasma physics
container_volume 89
creator Majeski, S.
Kunz, M.W.
Squire, J.
description With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high-$\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$, this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$. The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high-$\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.
doi_str_mv 10.1017/S0022377823000429
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1992105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377823000429</cupid><sourcerecordid>2817902994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f9b79e1c2a5df90cef5fa9e4d2ac2b0253c3b6e8cdb83dffb8ede9393d45a2913</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwiuBLwT1LHR1TxJ7XiAJwtx143rpK4ZNNDX4sH4ZlI1EocEKeVZr4ZrYaQS0ZvGWXy7o1SzoWUBReU0oyrIzJh2UylsqDymExGOx39U3KGuB4YQbmckOUy2C5uqh0Ga-p6lzTRBR_AJY1ZtdBHjG2wowqYhDaxsa4DhtjWgHiTVGFVpd9fyaY22Bg8Jyfe1AgXhzslH48P7_PndPH69DK_X6RWFLJPvSqlAma5yZ1X1ILPvVGQOW4sLynPhRXlDArrykI478sCHCihhMtywxUTU3K1743YB4029GArG9sWbK-ZUpzRfICu99Cmi59bwF6v47Zrh780L5hUlCuVDRTbU8MMiB14velCY7qdZlSP0-o_0w4ZcciYpuyCW8Fv9f-pH-affLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817902994</pqid></control><display><type>article</type><title>Microphysically modified magnetosonic modes in collisionless, high-β plasmas</title><source>Cambridge University Press Journals Complete</source><creator>Majeski, S. ; Kunz, M.W. ; Squire, J.</creator><creatorcontrib>Majeski, S. ; Kunz, M.W. ; Squire, J. ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high-$\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$, this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$. The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high-$\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377823000429</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Acoustic waves ; Amplitudes ; Anisotropy ; astrophysical plasmas ; Collisionless plasmas ; Damping ; Deposition ; Energy ; Magnetic fields ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Morphing ; Perturbation ; Plasma ; plasma instabilities ; Plasma physics ; plasma waves ; Propagation modes ; Scattering ; Solar wind ; Transit ; Wave propagation ; Wavelengths</subject><ispartof>Journal of plasma physics, 2023-05, Vol.89 (3), Article 905890303</ispartof><rights>Copyright © The Author(s), 2023. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f9b79e1c2a5df90cef5fa9e4d2ac2b0253c3b6e8cdb83dffb8ede9393d45a2913</citedby><cites>FETCH-LOGICAL-c387t-f9b79e1c2a5df90cef5fa9e4d2ac2b0253c3b6e8cdb83dffb8ede9393d45a2913</cites><orcidid>0000-0002-7879-060X ; 0000-0003-1676-6126 ; 0000-0001-8479-962X ; 000000018479962X ; 0000000316766126 ; 000000027879060X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377823000429/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1992105$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Majeski, S.</creatorcontrib><creatorcontrib>Kunz, M.W.</creatorcontrib><creatorcontrib>Squire, J.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Microphysically modified magnetosonic modes in collisionless, high-β plasmas</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high-$\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$, this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$. The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high-$\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Acoustic waves</subject><subject>Amplitudes</subject><subject>Anisotropy</subject><subject>astrophysical plasmas</subject><subject>Collisionless plasmas</subject><subject>Damping</subject><subject>Deposition</subject><subject>Energy</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Morphing</subject><subject>Perturbation</subject><subject>Plasma</subject><subject>plasma instabilities</subject><subject>Plasma physics</subject><subject>plasma waves</subject><subject>Propagation modes</subject><subject>Scattering</subject><subject>Solar wind</subject><subject>Transit</subject><subject>Wave propagation</subject><subject>Wavelengths</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwiuBLwT1LHR1TxJ7XiAJwtx143rpK4ZNNDX4sH4ZlI1EocEKeVZr4ZrYaQS0ZvGWXy7o1SzoWUBReU0oyrIzJh2UylsqDymExGOx39U3KGuB4YQbmckOUy2C5uqh0Ga-p6lzTRBR_AJY1ZtdBHjG2wowqYhDaxsa4DhtjWgHiTVGFVpd9fyaY22Bg8Jyfe1AgXhzslH48P7_PndPH69DK_X6RWFLJPvSqlAma5yZ1X1ILPvVGQOW4sLynPhRXlDArrykI478sCHCihhMtywxUTU3K1743YB4029GArG9sWbK-ZUpzRfICu99Cmi59bwF6v47Zrh780L5hUlCuVDRTbU8MMiB14velCY7qdZlSP0-o_0w4ZcciYpuyCW8Fv9f-pH-affLQ</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Majeski, S.</creator><creator>Kunz, M.W.</creator><creator>Squire, J.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7879-060X</orcidid><orcidid>https://orcid.org/0000-0003-1676-6126</orcidid><orcidid>https://orcid.org/0000-0001-8479-962X</orcidid><orcidid>https://orcid.org/000000018479962X</orcidid><orcidid>https://orcid.org/0000000316766126</orcidid><orcidid>https://orcid.org/000000027879060X</orcidid></search><sort><creationdate>20230524</creationdate><title>Microphysically modified magnetosonic modes in collisionless, high-β plasmas</title><author>Majeski, S. ; Kunz, M.W. ; Squire, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f9b79e1c2a5df90cef5fa9e4d2ac2b0253c3b6e8cdb83dffb8ede9393d45a2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Acoustic waves</topic><topic>Amplitudes</topic><topic>Anisotropy</topic><topic>astrophysical plasmas</topic><topic>Collisionless plasmas</topic><topic>Damping</topic><topic>Deposition</topic><topic>Energy</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Morphing</topic><topic>Perturbation</topic><topic>Plasma</topic><topic>plasma instabilities</topic><topic>Plasma physics</topic><topic>plasma waves</topic><topic>Propagation modes</topic><topic>Scattering</topic><topic>Solar wind</topic><topic>Transit</topic><topic>Wave propagation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majeski, S.</creatorcontrib><creatorcontrib>Kunz, M.W.</creatorcontrib><creatorcontrib>Squire, J.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majeski, S.</au><au>Kunz, M.W.</au><au>Squire, J.</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microphysically modified magnetosonic modes in collisionless, high-β plasmas</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>89</volume><issue>3</issue><artnum>905890303</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high-$\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$, this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$. The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high-$\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377823000429</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-7879-060X</orcidid><orcidid>https://orcid.org/0000-0003-1676-6126</orcidid><orcidid>https://orcid.org/0000-0001-8479-962X</orcidid><orcidid>https://orcid.org/000000018479962X</orcidid><orcidid>https://orcid.org/0000000316766126</orcidid><orcidid>https://orcid.org/000000027879060X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2023-05, Vol.89 (3), Article 905890303
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_1992105
source Cambridge University Press Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Acoustic waves
Amplitudes
Anisotropy
astrophysical plasmas
Collisionless plasmas
Damping
Deposition
Energy
Magnetic fields
Magnetohydrodynamic waves
Magnetohydrodynamics
Morphing
Perturbation
Plasma
plasma instabilities
Plasma physics
plasma waves
Propagation modes
Scattering
Solar wind
Transit
Wave propagation
Wavelengths
title Microphysically modified magnetosonic modes in collisionless, high-β plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microphysically%20modified%20magnetosonic%20modes%20in%20collisionless,%20high-%CE%B2%20plasmas&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Majeski,%20S.&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2023-05-24&rft.volume=89&rft.issue=3&rft.artnum=905890303&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377823000429&rft_dat=%3Cproquest_osti_%3E2817902994%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817902994&rft_id=info:pmid/&rft_cupid=10_1017_S0022377823000429&rfr_iscdi=true