Dense plasma opacity via the multiple-scattering method

The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-01, Vol.105 (1-2), p.015203-015203, Article 015203
Hauptverfasser: Shaffer, Nathaniel R, Starrett, Charles E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015203
container_issue 1-2
container_start_page 015203
container_title Physical review. E
container_volume 105
creator Shaffer, Nathaniel R
Starrett, Charles E
description The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between models and the experiment for Fe.
doi_str_mv 10.1103/PhysRevE.105.015203
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1990109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632150834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-b7c8e0f32d14057071493e3fa10dc101d3e8837011d4453b8127e4c2d7bfb8773</originalsourceid><addsrcrecordid>eNo9kNtKxEAMhgdR3EV9AkGKV950TSadnfZS1vUAgiJ6PUynqVvpyc6ssG9vZQ9XCeH7k_AJcYkwQwS6fVtt_Dv_LmcIagaoJNCRmMpEQwyg6PjQJ2oiLrz_BgCcQ6ZRnooJKcxIUjYV-p5bz1FfW9_YqOutq8Im-q1sFFYcNes6VH3NsXc2BB6q9itqOKy64lyclLb2fLGrZ-LzYfmxeIpfXh-fF3cvsRvvhzjXLmUoSRaYgNKgMcmIqbQIhUPAgjhNSQNikSSK8hSl5sTJQudlnmpNZ-J6u7fzoTJ-_I7dynVtyy4YzDJAyEboZgv1Q_ezZh9MU3nHdW1b7tbeyDlJVJBSMqK0Rd3QeT9wafqhauywMQjm36zZmx0HymzNjqmr3YF13nBxyOw90h-FE3N1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632150834</pqid></control><display><type>article</type><title>Dense plasma opacity via the multiple-scattering method</title><source>American Physical Society Journals</source><creator>Shaffer, Nathaniel R ; Starrett, Charles E</creator><creatorcontrib>Shaffer, Nathaniel R ; Starrett, Charles E ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between models and the experiment for Fe.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.015203</identifier><identifier>PMID: 35193239</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; First-principles calculations in plasma physics ; High-energy-density plasmas ; Hot dense plasma ; Laser light absorption in plasmas</subject><ispartof>Physical review. E, 2022-01, Vol.105 (1-2), p.015203-015203, Article 015203</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-b7c8e0f32d14057071493e3fa10dc101d3e8837011d4453b8127e4c2d7bfb8773</citedby><cites>FETCH-LOGICAL-c247t-b7c8e0f32d14057071493e3fa10dc101d3e8837011d4453b8127e4c2d7bfb8773</cites><orcidid>0000-0002-0710-0026 ; 0000-0002-1582-8148 ; 0000000215828148 ; 0000000207100026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35193239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1990109$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaffer, Nathaniel R</creatorcontrib><creatorcontrib>Starrett, Charles E</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Dense plasma opacity via the multiple-scattering method</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between models and the experiment for Fe.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>First-principles calculations in plasma physics</subject><subject>High-energy-density plasmas</subject><subject>Hot dense plasma</subject><subject>Laser light absorption in plasmas</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKxEAMhgdR3EV9AkGKV950TSadnfZS1vUAgiJ6PUynqVvpyc6ssG9vZQ9XCeH7k_AJcYkwQwS6fVtt_Dv_LmcIagaoJNCRmMpEQwyg6PjQJ2oiLrz_BgCcQ6ZRnooJKcxIUjYV-p5bz1FfW9_YqOutq8Im-q1sFFYcNes6VH3NsXc2BB6q9itqOKy64lyclLb2fLGrZ-LzYfmxeIpfXh-fF3cvsRvvhzjXLmUoSRaYgNKgMcmIqbQIhUPAgjhNSQNikSSK8hSl5sTJQudlnmpNZ-J6u7fzoTJ-_I7dynVtyy4YzDJAyEboZgv1Q_ezZh9MU3nHdW1b7tbeyDlJVJBSMqK0Rd3QeT9wafqhauywMQjm36zZmx0HymzNjqmr3YF13nBxyOw90h-FE3N1</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shaffer, Nathaniel R</creator><creator>Starrett, Charles E</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0710-0026</orcidid><orcidid>https://orcid.org/0000-0002-1582-8148</orcidid><orcidid>https://orcid.org/0000000215828148</orcidid><orcidid>https://orcid.org/0000000207100026</orcidid></search><sort><creationdate>20220101</creationdate><title>Dense plasma opacity via the multiple-scattering method</title><author>Shaffer, Nathaniel R ; Starrett, Charles E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-b7c8e0f32d14057071493e3fa10dc101d3e8837011d4453b8127e4c2d7bfb8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>First-principles calculations in plasma physics</topic><topic>High-energy-density plasmas</topic><topic>Hot dense plasma</topic><topic>Laser light absorption in plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaffer, Nathaniel R</creatorcontrib><creatorcontrib>Starrett, Charles E</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaffer, Nathaniel R</au><au>Starrett, Charles E</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense plasma opacity via the multiple-scattering method</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>105</volume><issue>1-2</issue><spage>015203</spage><epage>015203</epage><pages>015203-015203</pages><artnum>015203</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between models and the experiment for Fe.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>35193239</pmid><doi>10.1103/PhysRevE.105.015203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0710-0026</orcidid><orcidid>https://orcid.org/0000-0002-1582-8148</orcidid><orcidid>https://orcid.org/0000000215828148</orcidid><orcidid>https://orcid.org/0000000207100026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2022-01, Vol.105 (1-2), p.015203-015203, Article 015203
issn 2470-0045
2470-0053
language eng
recordid cdi_osti_scitechconnect_1990109
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
First-principles calculations in plasma physics
High-energy-density plasmas
Hot dense plasma
Laser light absorption in plasmas
title Dense plasma opacity via the multiple-scattering method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20plasma%20opacity%20via%20the%20multiple-scattering%20method&rft.jtitle=Physical%20review.%20E&rft.au=Shaffer,%20Nathaniel%20R&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-01-01&rft.volume=105&rft.issue=1-2&rft.spage=015203&rft.epage=015203&rft.pages=015203-015203&rft.artnum=015203&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.015203&rft_dat=%3Cproquest_osti_%3E2632150834%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632150834&rft_id=info:pmid/35193239&rfr_iscdi=true