tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking

A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-06, Vol.63 (11), p.3438-3447
Hauptverfasser: Hsu, Darren J., Davidson, Russell B., Sedova, Ada, Glaser, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3447
container_issue 11
container_start_page 3438
container_title Journal of chemical information and modeling
container_volume 63
creator Hsu, Darren J.
Davidson, Russell B.
Sedova, Ada
Glaser, Jens
description A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.
doi_str_mv 10.1021/acs.jcim.2c01530
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1989574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828427331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</originalsourceid><addsrcrecordid>eNp1kUtvEzEURi1UREvpnhWy2g0LJvg1jt1daQmNFKkIRSorLMePxGnGTsceof57XJKwQOrq3sX5vqurA8B7jEYYEfxZmzxam9CNiEG4pegVOMEtk43k6OfRYW8lPwZvc14jRKnk5A04pmOCmMDsBPwqIT5NJzeX8ArehuWqma_6NCxX26HALyHaEJfwe8oO_nA-RNe5WOB96h_8Jv2GexZOox2Ms80kFDgLSx0tvEnmoWbfgddeb7I7289TMJ98nV_fNrO7b9Prq1mjGaWlaTkV1EkpFgustbXeeow5054zZLSWRHNDhSaW8pZgL6hxC2JbLVh9znt6Cs53tSmXoLIJxZmVSTE6UxSWQrZjVqGPO2jbp8fB5aK6kI3bbHR0aciKCMzHnBLUVvTiP3Sdhj7WDypFBCNjSnGl0I4yfcq5d15t-9Dp_klhpJ79qOpHPftRez818mFfPCw6Z_8FDkIq8GkH_I0ejr7Y9wfFRpq3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828427331</pqid></control><display><type>article</type><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><source>American Chemical Society Publications</source><creator>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens</creator><creatorcontrib>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01530</identifier><identifier>PMID: 37204814</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computational Biochemistry ; computer simulations ; Docking ; genetics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Learning ; Ligands ; Protease inhibitors ; protein structure ; Proteins ; receptors ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2023-06, Vol.63 (11), p.3438-3447</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 12, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</citedby><cites>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</cites><orcidid>0000-0002-0353-7626 ; 0000-0003-1852-3849 ; 0000000282333057 ; 0000000318523849 ; 0000000203537626 ; 0000000323644039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01530$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01530$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1989574$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Darren J.</creatorcontrib><creatorcontrib>Davidson, Russell B.</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</description><subject>Computational Biochemistry</subject><subject>computer simulations</subject><subject>Docking</subject><subject>genetics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Learning</subject><subject>Ligands</subject><subject>Protease inhibitors</subject><subject>protein structure</subject><subject>Proteins</subject><subject>receptors</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvEzEURi1UREvpnhWy2g0LJvg1jt1daQmNFKkIRSorLMePxGnGTsceof57XJKwQOrq3sX5vqurA8B7jEYYEfxZmzxam9CNiEG4pegVOMEtk43k6OfRYW8lPwZvc14jRKnk5A04pmOCmMDsBPwqIT5NJzeX8ArehuWqma_6NCxX26HALyHaEJfwe8oO_nA-RNe5WOB96h_8Jv2GexZOox2Ms80kFDgLSx0tvEnmoWbfgddeb7I7289TMJ98nV_fNrO7b9Prq1mjGaWlaTkV1EkpFgustbXeeow5054zZLSWRHNDhSaW8pZgL6hxC2JbLVh9znt6Cs53tSmXoLIJxZmVSTE6UxSWQrZjVqGPO2jbp8fB5aK6kI3bbHR0aciKCMzHnBLUVvTiP3Sdhj7WDypFBCNjSnGl0I4yfcq5d15t-9Dp_klhpJ79qOpHPftRez818mFfPCw6Z_8FDkIq8GkH_I0ejr7Y9wfFRpq3</recordid><startdate>20230612</startdate><enddate>20230612</enddate><creator>Hsu, Darren J.</creator><creator>Davidson, Russell B.</creator><creator>Sedova, Ada</creator><creator>Glaser, Jens</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0353-7626</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000203537626</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid></search><sort><creationdate>20230612</creationdate><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><author>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Biochemistry</topic><topic>computer simulations</topic><topic>Docking</topic><topic>genetics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Learning</topic><topic>Ligands</topic><topic>Protease inhibitors</topic><topic>protein structure</topic><topic>Proteins</topic><topic>receptors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Darren J.</creatorcontrib><creatorcontrib>Davidson, Russell B.</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Darren J.</au><au>Davidson, Russell B.</au><au>Sedova, Ada</au><au>Glaser, Jens</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-06-12</date><risdate>2023</risdate><volume>63</volume><issue>11</issue><spage>3438</spage><epage>3447</epage><pages>3438-3447</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37204814</pmid><doi>10.1021/acs.jcim.2c01530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0353-7626</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000203537626</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-06, Vol.63 (11), p.3438-3447
issn 1549-9596
1549-960X
language eng
recordid cdi_osti_scitechconnect_1989574
source American Chemical Society Publications
subjects Computational Biochemistry
computer simulations
Docking
genetics
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Learning
Ligands
Protease inhibitors
protein structure
Proteins
receptors
Workflow
title tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tinyIFD:%20A%20High-Throughput%20Binding%20Pose%20Refinement%20Workflow%20Through%20Induced-Fit%20Ligand%20Docking&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hsu,%20Darren%20J.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-06-12&rft.volume=63&rft.issue=11&rft.spage=3438&rft.epage=3447&rft.pages=3438-3447&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01530&rft_dat=%3Cproquest_osti_%3E2828427331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828427331&rft_id=info:pmid/37204814&rfr_iscdi=true