tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking
A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-06, Vol.63 (11), p.3438-3447 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3447 |
---|---|
container_issue | 11 |
container_start_page | 3438 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Hsu, Darren J. Davidson, Russell B. Sedova, Ada Glaser, Jens |
description | A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow. |
doi_str_mv | 10.1021/acs.jcim.2c01530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1989574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828427331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</originalsourceid><addsrcrecordid>eNp1kUtvEzEURi1UREvpnhWy2g0LJvg1jt1daQmNFKkIRSorLMePxGnGTsceof57XJKwQOrq3sX5vqurA8B7jEYYEfxZmzxam9CNiEG4pegVOMEtk43k6OfRYW8lPwZvc14jRKnk5A04pmOCmMDsBPwqIT5NJzeX8ArehuWqma_6NCxX26HALyHaEJfwe8oO_nA-RNe5WOB96h_8Jv2GexZOox2Ms80kFDgLSx0tvEnmoWbfgddeb7I7289TMJ98nV_fNrO7b9Prq1mjGaWlaTkV1EkpFgustbXeeow5054zZLSWRHNDhSaW8pZgL6hxC2JbLVh9znt6Cs53tSmXoLIJxZmVSTE6UxSWQrZjVqGPO2jbp8fB5aK6kI3bbHR0aciKCMzHnBLUVvTiP3Sdhj7WDypFBCNjSnGl0I4yfcq5d15t-9Dp_klhpJ79qOpHPftRez818mFfPCw6Z_8FDkIq8GkH_I0ejr7Y9wfFRpq3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828427331</pqid></control><display><type>article</type><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><source>American Chemical Society Publications</source><creator>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens</creator><creatorcontrib>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01530</identifier><identifier>PMID: 37204814</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computational Biochemistry ; computer simulations ; Docking ; genetics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Learning ; Ligands ; Protease inhibitors ; protein structure ; Proteins ; receptors ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2023-06, Vol.63 (11), p.3438-3447</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 12, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</citedby><cites>FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</cites><orcidid>0000-0002-0353-7626 ; 0000-0003-1852-3849 ; 0000000282333057 ; 0000000318523849 ; 0000000203537626 ; 0000000323644039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01530$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01530$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1989574$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Darren J.</creatorcontrib><creatorcontrib>Davidson, Russell B.</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</description><subject>Computational Biochemistry</subject><subject>computer simulations</subject><subject>Docking</subject><subject>genetics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Learning</subject><subject>Ligands</subject><subject>Protease inhibitors</subject><subject>protein structure</subject><subject>Proteins</subject><subject>receptors</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvEzEURi1UREvpnhWy2g0LJvg1jt1daQmNFKkIRSorLMePxGnGTsceof57XJKwQOrq3sX5vqurA8B7jEYYEfxZmzxam9CNiEG4pegVOMEtk43k6OfRYW8lPwZvc14jRKnk5A04pmOCmMDsBPwqIT5NJzeX8ArehuWqma_6NCxX26HALyHaEJfwe8oO_nA-RNe5WOB96h_8Jv2GexZOox2Ms80kFDgLSx0tvEnmoWbfgddeb7I7289TMJ98nV_fNrO7b9Prq1mjGaWlaTkV1EkpFgustbXeeow5054zZLSWRHNDhSaW8pZgL6hxC2JbLVh9znt6Cs53tSmXoLIJxZmVSTE6UxSWQrZjVqGPO2jbp8fB5aK6kI3bbHR0aciKCMzHnBLUVvTiP3Sdhj7WDypFBCNjSnGl0I4yfcq5d15t-9Dp_klhpJ79qOpHPftRez818mFfPCw6Z_8FDkIq8GkH_I0ejr7Y9wfFRpq3</recordid><startdate>20230612</startdate><enddate>20230612</enddate><creator>Hsu, Darren J.</creator><creator>Davidson, Russell B.</creator><creator>Sedova, Ada</creator><creator>Glaser, Jens</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0353-7626</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000203537626</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid></search><sort><creationdate>20230612</creationdate><title>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</title><author>Hsu, Darren J. ; Davidson, Russell B. ; Sedova, Ada ; Glaser, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-56383e998bb1aaddfdf1164af640caa92a6c38a2d36521f83ceb2d5a84596ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Biochemistry</topic><topic>computer simulations</topic><topic>Docking</topic><topic>genetics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Learning</topic><topic>Ligands</topic><topic>Protease inhibitors</topic><topic>protein structure</topic><topic>Proteins</topic><topic>receptors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Darren J.</creatorcontrib><creatorcontrib>Davidson, Russell B.</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Darren J.</au><au>Davidson, Russell B.</au><au>Sedova, Ada</au><au>Glaser, Jens</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-06-12</date><risdate>2023</risdate><volume>63</volume><issue>11</issue><spage>3438</spage><epage>3447</epage><pages>3438-3447</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37204814</pmid><doi>10.1021/acs.jcim.2c01530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0353-7626</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000203537626</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-06, Vol.63 (11), p.3438-3447 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_osti_scitechconnect_1989574 |
source | American Chemical Society Publications |
subjects | Computational Biochemistry computer simulations Docking genetics INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Learning Ligands Protease inhibitors protein structure Proteins receptors Workflow |
title | tinyIFD: A High-Throughput Binding Pose Refinement Workflow Through Induced-Fit Ligand Docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tinyIFD:%20A%20High-Throughput%20Binding%20Pose%20Refinement%20Workflow%20Through%20Induced-Fit%20Ligand%20Docking&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hsu,%20Darren%20J.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-06-12&rft.volume=63&rft.issue=11&rft.spage=3438&rft.epage=3447&rft.pages=3438-3447&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01530&rft_dat=%3Cproquest_osti_%3E2828427331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828427331&rft_id=info:pmid/37204814&rfr_iscdi=true |