CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase

Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2023-09, Vol.239 (6), p.2212-2224
Hauptverfasser: Xin, Xiaoran, Wei, Donghui, Lei, Lei, Zheng, Haiyan, Wallace, Ian S., Li, Shundai, Gu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2224
container_issue 6
container_start_page 2212
container_title The New phytologist
container_volume 239
creator Xin, Xiaoran
Wei, Donghui
Lei, Lei
Zheng, Haiyan
Wallace, Ian S.
Li, Shundai
Gu, Ying
description Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.
doi_str_mv 10.1111/nph.19106
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1989245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839250286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</originalsourceid><addsrcrecordid>eNp10UFv0zAYBmALgVgZHPgDKIILHLLZju06x6nLWMXIKugkbpbjfFk8pXGxE029ceHOb-SX4DYDISR8sSw9fvXZL0IvCT4hcZ322_aE5ASLR2hGmMhTSbL5YzTDmMpUMPHlCD0L4Q5jnHNBn6KjbM6yyMUMfV-cXS2WNx9_fvtxXqyK8rwo18nq0_W6WJbJh2V59rnIaOLhduz0ACEx0HVj5wIklXVh1w8tBBuSofVuvG2TrQtDjBq87kO8YF2vu2TjattYczgmrvkr4xCgAzxHTxrdBXjxsB-jm4tivbhMr67fL-OEqWGEi5ThphKA61piTUwlcUMNzLXUWEsDrNJMEE5rAxoYlVzSmtdQGdHkoqEN4OwYvZ5y45hWBWMHMK1xfQ9mUCSXOWU8orcT2nr3dYQwqI0N-5l1D24Misospzx-rYj0zT_0zo0-vnmvOOFRYRnVu0kZ70Lw0Kittxvtd4pgtS9QxQLVocBoXz0kjtUG6j_yd2MRnE7g3naw-3-SKleXU-QvDlqnPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851550208</pqid></control><display><type>article</type><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</creator><creatorcontrib>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</creatorcontrib><description>Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19106</identifier><identifier>PMID: 37431066</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Baits ; Biofuels ; Biosynthesis ; Calcium ; calcium‐dependent protein kinase ; cell wall ; Cell walls ; Cellulose ; Cellulose synthase ; cellulose synthase complex ; Crystalline cellulose ; Dephosphorylation ; Deregulation ; Food sources ; Genetics ; Kinases ; Phosphorylation ; Protein biosynthesis ; Protein kinase ; protein phosphorylation ; Proteins ; Seedlings ; Stability ; Textiles ; Yeast ; Yeasts</subject><ispartof>The New phytologist, 2023-09, Vol.239 (6), p.2212-2224</ispartof><rights>2023 The Authors © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</citedby><cites>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</cites><orcidid>0000-0001-8415-4768 ; 0000000184154768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19106$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19106$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37431066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1989245$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Xiaoran</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Wallace, Ian S.</creatorcontrib><creatorcontrib>Li, Shundai</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</description><subject>Baits</subject><subject>Biofuels</subject><subject>Biosynthesis</subject><subject>Calcium</subject><subject>calcium‐dependent protein kinase</subject><subject>cell wall</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose synthase</subject><subject>cellulose synthase complex</subject><subject>Crystalline cellulose</subject><subject>Dephosphorylation</subject><subject>Deregulation</subject><subject>Food sources</subject><subject>Genetics</subject><subject>Kinases</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein kinase</subject><subject>protein phosphorylation</subject><subject>Proteins</subject><subject>Seedlings</subject><subject>Stability</subject><subject>Textiles</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10UFv0zAYBmALgVgZHPgDKIILHLLZju06x6nLWMXIKugkbpbjfFk8pXGxE029ceHOb-SX4DYDISR8sSw9fvXZL0IvCT4hcZ322_aE5ASLR2hGmMhTSbL5YzTDmMpUMPHlCD0L4Q5jnHNBn6KjbM6yyMUMfV-cXS2WNx9_fvtxXqyK8rwo18nq0_W6WJbJh2V59rnIaOLhduz0ACEx0HVj5wIklXVh1w8tBBuSofVuvG2TrQtDjBq87kO8YF2vu2TjattYczgmrvkr4xCgAzxHTxrdBXjxsB-jm4tivbhMr67fL-OEqWGEi5ThphKA61piTUwlcUMNzLXUWEsDrNJMEE5rAxoYlVzSmtdQGdHkoqEN4OwYvZ5y45hWBWMHMK1xfQ9mUCSXOWU8orcT2nr3dYQwqI0N-5l1D24Misospzx-rYj0zT_0zo0-vnmvOOFRYRnVu0kZ70Lw0Kittxvtd4pgtS9QxQLVocBoXz0kjtUG6j_yd2MRnE7g3naw-3-SKleXU-QvDlqnPg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Xin, Xiaoran</creator><creator>Wei, Donghui</creator><creator>Lei, Lei</creator><creator>Zheng, Haiyan</creator><creator>Wallace, Ian S.</creator><creator>Li, Shundai</creator><creator>Gu, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8415-4768</orcidid><orcidid>https://orcid.org/0000000184154768</orcidid></search><sort><creationdate>202309</creationdate><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><author>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Baits</topic><topic>Biofuels</topic><topic>Biosynthesis</topic><topic>Calcium</topic><topic>calcium‐dependent protein kinase</topic><topic>cell wall</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose synthase</topic><topic>cellulose synthase complex</topic><topic>Crystalline cellulose</topic><topic>Dephosphorylation</topic><topic>Deregulation</topic><topic>Food sources</topic><topic>Genetics</topic><topic>Kinases</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein kinase</topic><topic>protein phosphorylation</topic><topic>Proteins</topic><topic>Seedlings</topic><topic>Stability</topic><topic>Textiles</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Xiaoran</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Wallace, Ian S.</creatorcontrib><creatorcontrib>Li, Shundai</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Xiaoran</au><au>Wei, Donghui</au><au>Lei, Lei</au><au>Zheng, Haiyan</au><au>Wallace, Ian S.</au><au>Li, Shundai</au><au>Gu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>6</issue><spage>2212</spage><epage>2224</epage><pages>2212-2224</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37431066</pmid><doi>10.1111/nph.19106</doi><tpages>2224</tpages><orcidid>https://orcid.org/0000-0001-8415-4768</orcidid><orcidid>https://orcid.org/0000000184154768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-09, Vol.239 (6), p.2212-2224
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1989245
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals
subjects Baits
Biofuels
Biosynthesis
Calcium
calcium‐dependent protein kinase
cell wall
Cell walls
Cellulose
Cellulose synthase
cellulose synthase complex
Crystalline cellulose
Dephosphorylation
Deregulation
Food sources
Genetics
Kinases
Phosphorylation
Protein biosynthesis
Protein kinase
protein phosphorylation
Proteins
Seedlings
Stability
Textiles
Yeast
Yeasts
title CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CALCIUM%E2%80%90DEPENDENT%20PROTEIN%20KINASE32%20regulates%20cellulose%20biosynthesis%20through%20post%E2%80%90translational%20modification%20of%20cellulose%20synthase&rft.jtitle=The%20New%20phytologist&rft.au=Xin,%20Xiaoran&rft.date=2023-09&rft.volume=239&rft.issue=6&rft.spage=2212&rft.epage=2224&rft.pages=2212-2224&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19106&rft_dat=%3Cproquest_osti_%3E2839250286%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851550208&rft_id=info:pmid/37431066&rfr_iscdi=true