CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase
Summary Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellul...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2023-09, Vol.239 (6), p.2212-2224 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2224 |
---|---|
container_issue | 6 |
container_start_page | 2212 |
container_title | The New phytologist |
container_volume | 239 |
creator | Xin, Xiaoran Wei, Donghui Lei, Lei Zheng, Haiyan Wallace, Ian S. Li, Shundai Gu, Ying |
description | Summary
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs.
In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana.
We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs.
We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs. |
doi_str_mv | 10.1111/nph.19106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1989245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839250286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</originalsourceid><addsrcrecordid>eNp10UFv0zAYBmALgVgZHPgDKIILHLLZju06x6nLWMXIKugkbpbjfFk8pXGxE029ceHOb-SX4DYDISR8sSw9fvXZL0IvCT4hcZ322_aE5ASLR2hGmMhTSbL5YzTDmMpUMPHlCD0L4Q5jnHNBn6KjbM6yyMUMfV-cXS2WNx9_fvtxXqyK8rwo18nq0_W6WJbJh2V59rnIaOLhduz0ACEx0HVj5wIklXVh1w8tBBuSofVuvG2TrQtDjBq87kO8YF2vu2TjattYczgmrvkr4xCgAzxHTxrdBXjxsB-jm4tivbhMr67fL-OEqWGEi5ThphKA61piTUwlcUMNzLXUWEsDrNJMEE5rAxoYlVzSmtdQGdHkoqEN4OwYvZ5y45hWBWMHMK1xfQ9mUCSXOWU8orcT2nr3dYQwqI0N-5l1D24Misospzx-rYj0zT_0zo0-vnmvOOFRYRnVu0kZ70Lw0Kittxvtd4pgtS9QxQLVocBoXz0kjtUG6j_yd2MRnE7g3naw-3-SKleXU-QvDlqnPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851550208</pqid></control><display><type>article</type><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</creator><creatorcontrib>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</creatorcontrib><description>Summary
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs.
In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana.
We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs.
We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19106</identifier><identifier>PMID: 37431066</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Baits ; Biofuels ; Biosynthesis ; Calcium ; calcium‐dependent protein kinase ; cell wall ; Cell walls ; Cellulose ; Cellulose synthase ; cellulose synthase complex ; Crystalline cellulose ; Dephosphorylation ; Deregulation ; Food sources ; Genetics ; Kinases ; Phosphorylation ; Protein biosynthesis ; Protein kinase ; protein phosphorylation ; Proteins ; Seedlings ; Stability ; Textiles ; Yeast ; Yeasts</subject><ispartof>The New phytologist, 2023-09, Vol.239 (6), p.2212-2224</ispartof><rights>2023 The Authors © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</citedby><cites>FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</cites><orcidid>0000-0001-8415-4768 ; 0000000184154768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19106$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19106$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37431066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1989245$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Xiaoran</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Wallace, Ian S.</creatorcontrib><creatorcontrib>Li, Shundai</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs.
In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana.
We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs.
We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</description><subject>Baits</subject><subject>Biofuels</subject><subject>Biosynthesis</subject><subject>Calcium</subject><subject>calcium‐dependent protein kinase</subject><subject>cell wall</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose synthase</subject><subject>cellulose synthase complex</subject><subject>Crystalline cellulose</subject><subject>Dephosphorylation</subject><subject>Deregulation</subject><subject>Food sources</subject><subject>Genetics</subject><subject>Kinases</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein kinase</subject><subject>protein phosphorylation</subject><subject>Proteins</subject><subject>Seedlings</subject><subject>Stability</subject><subject>Textiles</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10UFv0zAYBmALgVgZHPgDKIILHLLZju06x6nLWMXIKugkbpbjfFk8pXGxE029ceHOb-SX4DYDISR8sSw9fvXZL0IvCT4hcZ322_aE5ASLR2hGmMhTSbL5YzTDmMpUMPHlCD0L4Q5jnHNBn6KjbM6yyMUMfV-cXS2WNx9_fvtxXqyK8rwo18nq0_W6WJbJh2V59rnIaOLhduz0ACEx0HVj5wIklXVh1w8tBBuSofVuvG2TrQtDjBq87kO8YF2vu2TjattYczgmrvkr4xCgAzxHTxrdBXjxsB-jm4tivbhMr67fL-OEqWGEi5ThphKA61piTUwlcUMNzLXUWEsDrNJMEE5rAxoYlVzSmtdQGdHkoqEN4OwYvZ5y45hWBWMHMK1xfQ9mUCSXOWU8orcT2nr3dYQwqI0N-5l1D24Misospzx-rYj0zT_0zo0-vnmvOOFRYRnVu0kZ70Lw0Kittxvtd4pgtS9QxQLVocBoXz0kjtUG6j_yd2MRnE7g3naw-3-SKleXU-QvDlqnPg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Xin, Xiaoran</creator><creator>Wei, Donghui</creator><creator>Lei, Lei</creator><creator>Zheng, Haiyan</creator><creator>Wallace, Ian S.</creator><creator>Li, Shundai</creator><creator>Gu, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8415-4768</orcidid><orcidid>https://orcid.org/0000000184154768</orcidid></search><sort><creationdate>202309</creationdate><title>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</title><author>Xin, Xiaoran ; Wei, Donghui ; Lei, Lei ; Zheng, Haiyan ; Wallace, Ian S. ; Li, Shundai ; Gu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-40fb6e0dd80a1cb80f2ce7a8a0a8ce4ba46152dceae428582d5debc6f96f2fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Baits</topic><topic>Biofuels</topic><topic>Biosynthesis</topic><topic>Calcium</topic><topic>calcium‐dependent protein kinase</topic><topic>cell wall</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose synthase</topic><topic>cellulose synthase complex</topic><topic>Crystalline cellulose</topic><topic>Dephosphorylation</topic><topic>Deregulation</topic><topic>Food sources</topic><topic>Genetics</topic><topic>Kinases</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein kinase</topic><topic>protein phosphorylation</topic><topic>Proteins</topic><topic>Seedlings</topic><topic>Stability</topic><topic>Textiles</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Xiaoran</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Wallace, Ian S.</creatorcontrib><creatorcontrib>Li, Shundai</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Xiaoran</au><au>Wei, Donghui</au><au>Lei, Lei</au><au>Zheng, Haiyan</au><au>Wallace, Ian S.</au><au>Li, Shundai</au><au>Gu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>6</issue><spage>2212</spage><epage>2224</epage><pages>2212-2224</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs.
In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana.
We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs.
We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37431066</pmid><doi>10.1111/nph.19106</doi><tpages>2224</tpages><orcidid>https://orcid.org/0000-0001-8415-4768</orcidid><orcidid>https://orcid.org/0000000184154768</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2023-09, Vol.239 (6), p.2212-2224 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_osti_scitechconnect_1989245 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals |
subjects | Baits Biofuels Biosynthesis Calcium calcium‐dependent protein kinase cell wall Cell walls Cellulose Cellulose synthase cellulose synthase complex Crystalline cellulose Dephosphorylation Deregulation Food sources Genetics Kinases Phosphorylation Protein biosynthesis Protein kinase protein phosphorylation Proteins Seedlings Stability Textiles Yeast Yeasts |
title | CALCIUM‐DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post‐translational modification of cellulose synthase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CALCIUM%E2%80%90DEPENDENT%20PROTEIN%20KINASE32%20regulates%20cellulose%20biosynthesis%20through%20post%E2%80%90translational%20modification%20of%20cellulose%20synthase&rft.jtitle=The%20New%20phytologist&rft.au=Xin,%20Xiaoran&rft.date=2023-09&rft.volume=239&rft.issue=6&rft.spage=2212&rft.epage=2224&rft.pages=2212-2224&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19106&rft_dat=%3Cproquest_osti_%3E2839250286%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851550208&rft_id=info:pmid/37431066&rfr_iscdi=true |