Performance and power modeling and prediction using MuMMI and 10 machine learning methods

Energy-efficient scientific applications require insight into how high performance computing system features impact the applications' power and performance. This insight can result from the development of performance and power models. Here, in this article, we use the modeling and prediction to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2022-08, Vol.35 (15)
Hauptverfasser: Wu, Xingfu, Taylor, Valerie, Lan, Zhiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Concurrency and computation
container_volume 35
creator Wu, Xingfu
Taylor, Valerie
Lan, Zhiling
description Energy-efficient scientific applications require insight into how high performance computing system features impact the applications' power and performance. This insight can result from the development of performance and power models. Here, in this article, we use the modeling and prediction tool MuMMI (Multiple Metrics Modeling Infrastructure) and 10 machine learning methods to model and predict performance and power consumption and compare their prediction error rates. We use an algorithm-based fault-tolerant linear algebra code and a multilevel checkpointing fault-tolerant heat distribution code to conduct our modeling and prediction study on the Cray XC40 Theta and IBM BG/Q Mira at Argonne National Laboratory and the Intel Haswell cluster Shepard at Sandia National Laboratories. Our experimental results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. By utilizing the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for potential application optimizations, and we predict theoretical outcomes of the optimizations. Based on two collected datasets, we analyze and compare the prediction accuracy in performance and power consumption using MuMMI and 10 machine learning methods.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1986033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986033</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19860333</originalsourceid><addsrcrecordid>eNqNir0KwjAURoMoWH_eIbgLSaNFZ1F0KDi4OJWQ3NpIcyO5Kb6-VMXZ6Tuc8w1YJtcqX4pCrYY_zosxmxDdhZBSKJmx6xliHaLXaIBrtPwRnhC5DxZah7ePimCdSS4g76iXZVeWp3eSgnttGofAW9AR--ohNcHSjI1q3RLMvztli8P-sjsuAyVXkXEJTGMCIphUye2mEEqpv04vH95C0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance and power modeling and prediction using MuMMI and 10 machine learning methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Xingfu ; Taylor, Valerie ; Lan, Zhiling</creator><creatorcontrib>Wu, Xingfu ; Taylor, Valerie ; Lan, Zhiling ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Energy-efficient scientific applications require insight into how high performance computing system features impact the applications' power and performance. This insight can result from the development of performance and power models. Here, in this article, we use the modeling and prediction tool MuMMI (Multiple Metrics Modeling Infrastructure) and 10 machine learning methods to model and predict performance and power consumption and compare their prediction error rates. We use an algorithm-based fault-tolerant linear algebra code and a multilevel checkpointing fault-tolerant heat distribution code to conduct our modeling and prediction study on the Cray XC40 Theta and IBM BG/Q Mira at Argonne National Laboratory and the Intel Haswell cluster Shepard at Sandia National Laboratories. Our experimental results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. By utilizing the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for potential application optimizations, and we predict theoretical outcomes of the optimizations. Based on two collected datasets, we analyze and compare the prediction accuracy in performance and power consumption using MuMMI and 10 machine learning methods.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>fault tolerant applications ; machine learning ; MATHEMATICS AND COMPUTING ; modeling ; MuMMI ; power ; prediction</subject><ispartof>Concurrency and computation, 2022-08, Vol.35 (15)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000181505171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1986033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Lan, Zhiling</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Performance and power modeling and prediction using MuMMI and 10 machine learning methods</title><title>Concurrency and computation</title><description>Energy-efficient scientific applications require insight into how high performance computing system features impact the applications' power and performance. This insight can result from the development of performance and power models. Here, in this article, we use the modeling and prediction tool MuMMI (Multiple Metrics Modeling Infrastructure) and 10 machine learning methods to model and predict performance and power consumption and compare their prediction error rates. We use an algorithm-based fault-tolerant linear algebra code and a multilevel checkpointing fault-tolerant heat distribution code to conduct our modeling and prediction study on the Cray XC40 Theta and IBM BG/Q Mira at Argonne National Laboratory and the Intel Haswell cluster Shepard at Sandia National Laboratories. Our experimental results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. By utilizing the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for potential application optimizations, and we predict theoretical outcomes of the optimizations. Based on two collected datasets, we analyze and compare the prediction accuracy in performance and power consumption using MuMMI and 10 machine learning methods.</description><subject>fault tolerant applications</subject><subject>machine learning</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>modeling</subject><subject>MuMMI</subject><subject>power</subject><subject>prediction</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNir0KwjAURoMoWH_eIbgLSaNFZ1F0KDi4OJWQ3NpIcyO5Kb6-VMXZ6Tuc8w1YJtcqX4pCrYY_zosxmxDdhZBSKJmx6xliHaLXaIBrtPwRnhC5DxZah7ePimCdSS4g76iXZVeWp3eSgnttGofAW9AR--ohNcHSjI1q3RLMvztli8P-sjsuAyVXkXEJTGMCIphUye2mEEqpv04vH95C0g</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Wu, Xingfu</creator><creator>Taylor, Valerie</creator><creator>Lan, Zhiling</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000181505171</orcidid></search><sort><creationdate>20220805</creationdate><title>Performance and power modeling and prediction using MuMMI and 10 machine learning methods</title><author>Wu, Xingfu ; Taylor, Valerie ; Lan, Zhiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19860333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fault tolerant applications</topic><topic>machine learning</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>modeling</topic><topic>MuMMI</topic><topic>power</topic><topic>prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Lan, Zhiling</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xingfu</au><au>Taylor, Valerie</au><au>Lan, Zhiling</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and power modeling and prediction using MuMMI and 10 machine learning methods</atitle><jtitle>Concurrency and computation</jtitle><date>2022-08-05</date><risdate>2022</risdate><volume>35</volume><issue>15</issue><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Energy-efficient scientific applications require insight into how high performance computing system features impact the applications' power and performance. This insight can result from the development of performance and power models. Here, in this article, we use the modeling and prediction tool MuMMI (Multiple Metrics Modeling Infrastructure) and 10 machine learning methods to model and predict performance and power consumption and compare their prediction error rates. We use an algorithm-based fault-tolerant linear algebra code and a multilevel checkpointing fault-tolerant heat distribution code to conduct our modeling and prediction study on the Cray XC40 Theta and IBM BG/Q Mira at Argonne National Laboratory and the Intel Haswell cluster Shepard at Sandia National Laboratories. Our experimental results show that the prediction error rates in performance and power using MuMMI are less than 10% for most cases. By utilizing the models for runtime, node power, CPU power, and memory power, we identify the most significant performance counters for potential application optimizations, and we predict theoretical outcomes of the optimizations. Based on two collected datasets, we analyze and compare the prediction accuracy in performance and power consumption using MuMMI and 10 machine learning methods.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000181505171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-08, Vol.35 (15)
issn 1532-0626
1532-0634
language eng
recordid cdi_osti_scitechconnect_1986033
source Wiley Online Library Journals Frontfile Complete
subjects fault tolerant applications
machine learning
MATHEMATICS AND COMPUTING
modeling
MuMMI
power
prediction
title Performance and power modeling and prediction using MuMMI and 10 machine learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20power%20modeling%20and%20prediction%20using%20MuMMI%20and%2010%20machine%20learning%20methods&rft.jtitle=Concurrency%20and%20computation&rft.au=Wu,%20Xingfu&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-08-05&rft.volume=35&rft.issue=15&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/&rft_dat=%3Costi%3E1986033%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true