Molecular photodissociation dynamics revealed by Coulomb explosion imaging
Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters, etc ). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities t...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-06, Vol.25 (25), p.16672-16698 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16698 |
---|---|
container_issue | 25 |
container_start_page | 16672 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Crane, Stuart W Lee, Jason W. L Ashfold, Michael N. R Rolles, Daniel |
description | Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters,
etc
). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
This Perspective illustrates the growing use of ultrafast laser induced Coulomb explosion imaging methods for tracking time-evolving molecular structures and advancing understanding of gas phase molecular fragmentation processes. |
doi_str_mv | 10.1039/d3cp01740k |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1985710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830207630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-ffba146e077937fcb56bf8ef133c15d1561248415903a75430020769ee792a4f3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMorq5evCtFLyKsJp100x6lfruiBz2XNJ1qtG1q0or735v9cAVPMzA_3sybR8geo6eMQnJWgGopE5x-rJEtxscwSmjM11e9GA_ItnPvlFIWMdgkAxAAUcjFFrl7MBWqvpI2aN9MZwrtnFFadto0QTFtZK2VCyx-oaywCPJpkJq-MnUe4HdbGTfDdC1fdfO6QzZKWTncXdYhebm6fE5vRpPH69v0fDJSnNJuVJa59IchFSIBUao8GudljCUDUCwqWDRmIY85ixIKUkQcKA29hQRRJKHkJQzJ4ULXuE5nTukO1ZsyTYOqy1gSR8J_ZUiOF1BrzWePrstq7RRWlWzQ9C4L49DLUZ6AR4_-oe-mt4234CmYL4eZ4MmCUtY4Z7HMWuuN22nGaDaLIbuA9Gkew72HD5aSfV5jsUJ__-6B_QVgnVpN_3KEH_icioA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830207630</pqid></control><display><type>article</type><title>Molecular photodissociation dynamics revealed by Coulomb explosion imaging</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Crane, Stuart W ; Lee, Jason W. L ; Ashfold, Michael N. R ; Rolles, Daniel</creator><creatorcontrib>Crane, Stuart W ; Lee, Jason W. L ; Ashfold, Michael N. R ; Rolles, Daniel ; Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><description>Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters,
etc
). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
This Perspective illustrates the growing use of ultrafast laser induced Coulomb explosion imaging methods for tracking time-evolving molecular structures and advancing understanding of gas phase molecular fragmentation processes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01740k</identifier><identifier>PMID: 37335247</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemistry ; Color ; Evolution ; Femtosecond pulses ; Field ionization ; Fragmentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion charge ; Lasers ; Molecular structure ; Photodissociation ; Physics ; Position sensing ; Ultraviolet lasers</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-06, Vol.25 (25), p.16672-16698</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-ffba146e077937fcb56bf8ef133c15d1561248415903a75430020769ee792a4f3</citedby><cites>FETCH-LOGICAL-c400t-ffba146e077937fcb56bf8ef133c15d1561248415903a75430020769ee792a4f3</cites><orcidid>0000-0002-1261-6246 ; 0000-0002-3517-5615 ; 0000-0002-3965-3477 ; 0000-0001-5762-7048 ; 0000000212616246 ; 0000000235175615 ; 0000000239653477 ; 0000000157627048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37335247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1985710$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Crane, Stuart W</creatorcontrib><creatorcontrib>Lee, Jason W. L</creatorcontrib><creatorcontrib>Ashfold, Michael N. R</creatorcontrib><creatorcontrib>Rolles, Daniel</creatorcontrib><creatorcontrib>Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><title>Molecular photodissociation dynamics revealed by Coulomb explosion imaging</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters,
etc
). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
This Perspective illustrates the growing use of ultrafast laser induced Coulomb explosion imaging methods for tracking time-evolving molecular structures and advancing understanding of gas phase molecular fragmentation processes.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Color</subject><subject>Evolution</subject><subject>Femtosecond pulses</subject><subject>Field ionization</subject><subject>Fragmentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion charge</subject><subject>Lasers</subject><subject>Molecular structure</subject><subject>Photodissociation</subject><subject>Physics</subject><subject>Position sensing</subject><subject>Ultraviolet lasers</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMorq5evCtFLyKsJp100x6lfruiBz2XNJ1qtG1q0or735v9cAVPMzA_3sybR8geo6eMQnJWgGopE5x-rJEtxscwSmjM11e9GA_ItnPvlFIWMdgkAxAAUcjFFrl7MBWqvpI2aN9MZwrtnFFadto0QTFtZK2VCyx-oaywCPJpkJq-MnUe4HdbGTfDdC1fdfO6QzZKWTncXdYhebm6fE5vRpPH69v0fDJSnNJuVJa59IchFSIBUao8GudljCUDUCwqWDRmIY85ixIKUkQcKA29hQRRJKHkJQzJ4ULXuE5nTukO1ZsyTYOqy1gSR8J_ZUiOF1BrzWePrstq7RRWlWzQ9C4L49DLUZ6AR4_-oe-mt4234CmYL4eZ4MmCUtY4Z7HMWuuN22nGaDaLIbuA9Gkew72HD5aSfV5jsUJ__-6B_QVgnVpN_3KEH_icioA</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Crane, Stuart W</creator><creator>Lee, Jason W. L</creator><creator>Ashfold, Michael N. R</creator><creator>Rolles, Daniel</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1261-6246</orcidid><orcidid>https://orcid.org/0000-0002-3517-5615</orcidid><orcidid>https://orcid.org/0000-0002-3965-3477</orcidid><orcidid>https://orcid.org/0000-0001-5762-7048</orcidid><orcidid>https://orcid.org/0000000212616246</orcidid><orcidid>https://orcid.org/0000000235175615</orcidid><orcidid>https://orcid.org/0000000239653477</orcidid><orcidid>https://orcid.org/0000000157627048</orcidid></search><sort><creationdate>20230628</creationdate><title>Molecular photodissociation dynamics revealed by Coulomb explosion imaging</title><author>Crane, Stuart W ; Lee, Jason W. L ; Ashfold, Michael N. R ; Rolles, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-ffba146e077937fcb56bf8ef133c15d1561248415903a75430020769ee792a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Color</topic><topic>Evolution</topic><topic>Femtosecond pulses</topic><topic>Field ionization</topic><topic>Fragmentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion charge</topic><topic>Lasers</topic><topic>Molecular structure</topic><topic>Photodissociation</topic><topic>Physics</topic><topic>Position sensing</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crane, Stuart W</creatorcontrib><creatorcontrib>Lee, Jason W. L</creatorcontrib><creatorcontrib>Ashfold, Michael N. R</creatorcontrib><creatorcontrib>Rolles, Daniel</creatorcontrib><creatorcontrib>Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crane, Stuart W</au><au>Lee, Jason W. L</au><au>Ashfold, Michael N. R</au><au>Rolles, Daniel</au><aucorp>Kansas State Univ., Manhattan, KS (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular photodissociation dynamics revealed by Coulomb explosion imaging</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>25</volume><issue>25</issue><spage>16672</spage><epage>16698</epage><pages>16672-16698</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters,
etc
). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
This Perspective illustrates the growing use of ultrafast laser induced Coulomb explosion imaging methods for tracking time-evolving molecular structures and advancing understanding of gas phase molecular fragmentation processes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37335247</pmid><doi>10.1039/d3cp01740k</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1261-6246</orcidid><orcidid>https://orcid.org/0000-0002-3517-5615</orcidid><orcidid>https://orcid.org/0000-0002-3965-3477</orcidid><orcidid>https://orcid.org/0000-0001-5762-7048</orcidid><orcidid>https://orcid.org/0000000212616246</orcidid><orcidid>https://orcid.org/0000000235175615</orcidid><orcidid>https://orcid.org/0000000239653477</orcidid><orcidid>https://orcid.org/0000000157627048</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-06, Vol.25 (25), p.16672-16698 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1985710 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Charge transfer Chemistry Color Evolution Femtosecond pulses Field ionization Fragmentation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ion charge Lasers Molecular structure Photodissociation Physics Position sensing Ultraviolet lasers |
title | Molecular photodissociation dynamics revealed by Coulomb explosion imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20photodissociation%20dynamics%20revealed%20by%20Coulomb%20explosion%20imaging&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Crane,%20Stuart%20W&rft.aucorp=Kansas%20State%20Univ.,%20Manhattan,%20KS%20(United%20States)&rft.date=2023-06-28&rft.volume=25&rft.issue=25&rft.spage=16672&rft.epage=16698&rft.pages=16672-16698&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01740k&rft_dat=%3Cproquest_osti_%3E2830207630%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830207630&rft_id=info:pmid/37335247&rfr_iscdi=true |