A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion

Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-10, Vol.33 (42)
Hauptverfasser: Din, Mir Mehraj Ud, Ladenstein, Lukas, Ring, Joseph, Knez, Daniel, Smetaczek, Stefan, Kubicek, Markus, Sadeqi‐Moqadam, Mohsen, Ganschow, Steffen, Salagre, Elena, Michel, Enrique G., Lode, Stefanie, Kothleitner, Gerald, Dugulan, Iulian, Smith, Jeffrey G., Limbeck, Andreas, Fleig, Jürgen, Siegel, Donald J., Redhammer, Günther J., Rettenwander, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 33
creator Din, Mir Mehraj Ud
Ladenstein, Lukas
Ring, Joseph
Knez, Daniel
Smetaczek, Stefan
Kubicek, Markus
Sadeqi‐Moqadam, Mohsen
Ganschow, Steffen
Salagre, Elena
Michel, Enrique G.
Lode, Stefanie
Kothleitner, Gerald
Dugulan, Iulian
Smith, Jeffrey G.
Limbeck, Andreas
Fleig, Jürgen
Siegel, Donald J.
Redhammer, Günther J.
Rettenwander, Daniel
description Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li 7 La 3 Zr 2 O 12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four‐fold coordinated as Co 2+ or Co 3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic‐to‐tetragonal phase transition. Moreover, the temperature‐dependent Co diffusion coefficient is determined, for example, D 700 °C = 9.46 × 10 −14 cm 2 s −1 and an activation energy E a = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al 2 O 3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid‐state batteries.
doi_str_mv 10.1002/adfm.202303680
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1985533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877269748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-855f6fb0b9b90ad388a73dcabc9780a755ffb406edf811612a974d941888861e3</originalsourceid><addsrcrecordid>eNo9UMtKAzEUHUTBWt26DrpuTSbTSWZZp1oLFYUquAuZPGrKNKlJZtGdn-A3-iVmqPRu7oXz4J6TZdcIjhGE-R2XejvOYY4hLik8yQaoROUIw5yeHm_0cZ5dhLCBEBGCi0Fmp2DeGalaYxWIDjybaNY8KrCwUXnNheEtmKm155JH4yx49U6oEFQAxoKVa438_f5ZxV5yz2PSmATVvAtKgmYPau9CADOjdReS_DI707wN6up_D7P3x4e3-mm0fJkv6ulyJDAu4ohOJrrUDWyqpoJcYko5wVLwRlSEQk4SrJsClkpqilK0nFekkFWBaJoSKTzMbg6-LkTDgjBRiU_hrFUiMlQlf4wT6fZA2nn31akQ2cZ13qa_WE4JyctkShNrfGCJPopXmu282XK_ZwiyvnjWF8-OxeM_w6x3XQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877269748</pqid></control><display><type>article</type><title>A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Din, Mir Mehraj Ud ; Ladenstein, Lukas ; Ring, Joseph ; Knez, Daniel ; Smetaczek, Stefan ; Kubicek, Markus ; Sadeqi‐Moqadam, Mohsen ; Ganschow, Steffen ; Salagre, Elena ; Michel, Enrique G. ; Lode, Stefanie ; Kothleitner, Gerald ; Dugulan, Iulian ; Smith, Jeffrey G. ; Limbeck, Andreas ; Fleig, Jürgen ; Siegel, Donald J. ; Redhammer, Günther J. ; Rettenwander, Daniel</creator><creatorcontrib>Din, Mir Mehraj Ud ; Ladenstein, Lukas ; Ring, Joseph ; Knez, Daniel ; Smetaczek, Stefan ; Kubicek, Markus ; Sadeqi‐Moqadam, Mohsen ; Ganschow, Steffen ; Salagre, Elena ; Michel, Enrique G. ; Lode, Stefanie ; Kothleitner, Gerald ; Dugulan, Iulian ; Smith, Jeffrey G. ; Limbeck, Andreas ; Fleig, Jürgen ; Siegel, Donald J. ; Redhammer, Günther J. ; Rettenwander, Daniel</creatorcontrib><description>Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li 7 La 3 Zr 2 O 12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four‐fold coordinated as Co 2+ or Co 3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic‐to‐tetragonal phase transition. Moreover, the temperature‐dependent Co diffusion coefficient is determined, for example, D 700 °C = 9.46 × 10 −14 cm 2 s −1 and an activation energy E a = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al 2 O 3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid‐state batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202303680</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Charge materials ; Charge transport ; Cobalt ; Degradation ; Diffusion coefficient ; Electrochemical analysis ; Fugacity ; Materials science ; Optimization ; Phase transitions ; Protective coatings ; Temperature dependence ; Transition metals</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (42)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-855f6fb0b9b90ad388a73dcabc9780a755ffb406edf811612a974d941888861e3</citedby><cites>FETCH-LOGICAL-c334t-855f6fb0b9b90ad388a73dcabc9780a755ffb406edf811612a974d941888861e3</cites><orcidid>0000-0002-2074-941X ; 000000022074941X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1985533$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Din, Mir Mehraj Ud</creatorcontrib><creatorcontrib>Ladenstein, Lukas</creatorcontrib><creatorcontrib>Ring, Joseph</creatorcontrib><creatorcontrib>Knez, Daniel</creatorcontrib><creatorcontrib>Smetaczek, Stefan</creatorcontrib><creatorcontrib>Kubicek, Markus</creatorcontrib><creatorcontrib>Sadeqi‐Moqadam, Mohsen</creatorcontrib><creatorcontrib>Ganschow, Steffen</creatorcontrib><creatorcontrib>Salagre, Elena</creatorcontrib><creatorcontrib>Michel, Enrique G.</creatorcontrib><creatorcontrib>Lode, Stefanie</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Dugulan, Iulian</creatorcontrib><creatorcontrib>Smith, Jeffrey G.</creatorcontrib><creatorcontrib>Limbeck, Andreas</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><creatorcontrib>Siegel, Donald J.</creatorcontrib><creatorcontrib>Redhammer, Günther J.</creatorcontrib><creatorcontrib>Rettenwander, Daniel</creatorcontrib><title>A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion</title><title>Advanced functional materials</title><description>Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li 7 La 3 Zr 2 O 12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four‐fold coordinated as Co 2+ or Co 3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic‐to‐tetragonal phase transition. Moreover, the temperature‐dependent Co diffusion coefficient is determined, for example, D 700 °C = 9.46 × 10 −14 cm 2 s −1 and an activation energy E a = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al 2 O 3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid‐state batteries.</description><subject>Aluminum oxide</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>Cobalt</subject><subject>Degradation</subject><subject>Diffusion coefficient</subject><subject>Electrochemical analysis</subject><subject>Fugacity</subject><subject>Materials science</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Protective coatings</subject><subject>Temperature dependence</subject><subject>Transition metals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKAzEUHUTBWt26DrpuTSbTSWZZp1oLFYUquAuZPGrKNKlJZtGdn-A3-iVmqPRu7oXz4J6TZdcIjhGE-R2XejvOYY4hLik8yQaoROUIw5yeHm_0cZ5dhLCBEBGCi0Fmp2DeGalaYxWIDjybaNY8KrCwUXnNheEtmKm155JH4yx49U6oEFQAxoKVa438_f5ZxV5yz2PSmATVvAtKgmYPau9CADOjdReS_DI707wN6up_D7P3x4e3-mm0fJkv6ulyJDAu4ohOJrrUDWyqpoJcYko5wVLwRlSEQk4SrJsClkpqilK0nFekkFWBaJoSKTzMbg6-LkTDgjBRiU_hrFUiMlQlf4wT6fZA2nn31akQ2cZ13qa_WE4JyctkShNrfGCJPopXmu282XK_ZwiyvnjWF8-OxeM_w6x3XQ</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Din, Mir Mehraj Ud</creator><creator>Ladenstein, Lukas</creator><creator>Ring, Joseph</creator><creator>Knez, Daniel</creator><creator>Smetaczek, Stefan</creator><creator>Kubicek, Markus</creator><creator>Sadeqi‐Moqadam, Mohsen</creator><creator>Ganschow, Steffen</creator><creator>Salagre, Elena</creator><creator>Michel, Enrique G.</creator><creator>Lode, Stefanie</creator><creator>Kothleitner, Gerald</creator><creator>Dugulan, Iulian</creator><creator>Smith, Jeffrey G.</creator><creator>Limbeck, Andreas</creator><creator>Fleig, Jürgen</creator><creator>Siegel, Donald J.</creator><creator>Redhammer, Günther J.</creator><creator>Rettenwander, Daniel</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2074-941X</orcidid><orcidid>https://orcid.org/000000022074941X</orcidid></search><sort><creationdate>20231013</creationdate><title>A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion</title><author>Din, Mir Mehraj Ud ; Ladenstein, Lukas ; Ring, Joseph ; Knez, Daniel ; Smetaczek, Stefan ; Kubicek, Markus ; Sadeqi‐Moqadam, Mohsen ; Ganschow, Steffen ; Salagre, Elena ; Michel, Enrique G. ; Lode, Stefanie ; Kothleitner, Gerald ; Dugulan, Iulian ; Smith, Jeffrey G. ; Limbeck, Andreas ; Fleig, Jürgen ; Siegel, Donald J. ; Redhammer, Günther J. ; Rettenwander, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-855f6fb0b9b90ad388a73dcabc9780a755ffb406edf811612a974d941888861e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>Cobalt</topic><topic>Degradation</topic><topic>Diffusion coefficient</topic><topic>Electrochemical analysis</topic><topic>Fugacity</topic><topic>Materials science</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Protective coatings</topic><topic>Temperature dependence</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Din, Mir Mehraj Ud</creatorcontrib><creatorcontrib>Ladenstein, Lukas</creatorcontrib><creatorcontrib>Ring, Joseph</creatorcontrib><creatorcontrib>Knez, Daniel</creatorcontrib><creatorcontrib>Smetaczek, Stefan</creatorcontrib><creatorcontrib>Kubicek, Markus</creatorcontrib><creatorcontrib>Sadeqi‐Moqadam, Mohsen</creatorcontrib><creatorcontrib>Ganschow, Steffen</creatorcontrib><creatorcontrib>Salagre, Elena</creatorcontrib><creatorcontrib>Michel, Enrique G.</creatorcontrib><creatorcontrib>Lode, Stefanie</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Dugulan, Iulian</creatorcontrib><creatorcontrib>Smith, Jeffrey G.</creatorcontrib><creatorcontrib>Limbeck, Andreas</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><creatorcontrib>Siegel, Donald J.</creatorcontrib><creatorcontrib>Redhammer, Günther J.</creatorcontrib><creatorcontrib>Rettenwander, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Din, Mir Mehraj Ud</au><au>Ladenstein, Lukas</au><au>Ring, Joseph</au><au>Knez, Daniel</au><au>Smetaczek, Stefan</au><au>Kubicek, Markus</au><au>Sadeqi‐Moqadam, Mohsen</au><au>Ganschow, Steffen</au><au>Salagre, Elena</au><au>Michel, Enrique G.</au><au>Lode, Stefanie</au><au>Kothleitner, Gerald</au><au>Dugulan, Iulian</au><au>Smith, Jeffrey G.</au><au>Limbeck, Andreas</au><au>Fleig, Jürgen</au><au>Siegel, Donald J.</au><au>Redhammer, Günther J.</au><au>Rettenwander, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-13</date><risdate>2023</risdate><volume>33</volume><issue>42</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li 7 La 3 Zr 2 O 12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four‐fold coordinated as Co 2+ or Co 3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic‐to‐tetragonal phase transition. Moreover, the temperature‐dependent Co diffusion coefficient is determined, for example, D 700 °C = 9.46 × 10 −14 cm 2 s −1 and an activation energy E a = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al 2 O 3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid‐state batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202303680</doi><orcidid>https://orcid.org/0000-0002-2074-941X</orcidid><orcidid>https://orcid.org/000000022074941X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (42)
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1985533
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Charge materials
Charge transport
Cobalt
Degradation
Diffusion coefficient
Electrochemical analysis
Fugacity
Materials science
Optimization
Phase transitions
Protective coatings
Temperature dependence
Transition metals
title A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Guideline%20to%20Mitigate%20Interfacial%20Degradation%20Processes%20in%20Solid%E2%80%90State%20Batteries%20Caused%20by%20Cross%20Diffusion&rft.jtitle=Advanced%20functional%20materials&rft.au=Din,%20Mir%20Mehraj%20Ud&rft.date=2023-10-13&rft.volume=33&rft.issue=42&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202303680&rft_dat=%3Cproquest_osti_%3E2877269748%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877269748&rft_id=info:pmid/&rfr_iscdi=true