Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films

Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2023-05, Vol.7 (5)
Hauptverfasser: Will-Cole, A. R., Hart, James L., Lauter, Valeria, Grutter, Alexander, Dubs, Carsten, Lindner, Morris, Reimann, Timmy, Valdez, Nichole R., Pearce, Charles Joseph, Monson, Todd C., Cha, Judy J., Heiman, Don, Sun, Nian X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review materials
container_volume 7
creator Will-Cole, A. R.
Hart, James L.
Lauter, Valeria
Grutter, Alexander
Dubs, Carsten
Lindner, Morris
Reimann, Timmy
Valdez, Nichole R.
Pearce, Charles Joseph
Monson, Todd C.
Cha, Judy J.
Heiman, Don
Sun, Nian X.
description Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here, in this study, we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.
doi_str_mv 10.1103/PhysRevMaterials.7.054411
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1985365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985365</sourcerecordid><originalsourceid>FETCH-LOGICAL-o112t-a5e765696692c2b7b70709c0c0c2f774c6b5198598e132027ffeed31ab946db73</originalsourceid><addsrcrecordid>eNpNjkFLAzEUhIMoWGr_Q_S-a16ySZqjFKtCtSJ6EA8lm327jaS7dZNa--9d0YPMYT4GZhhCzoHlAExcPq4P8Qk_723C3tsQc50zWRQAR2TECy0zY6Q4_senZBLjO2MMphK4NiPy9oBN8I0vA9KNbVpM3tHQxYiR2jTQnibcbLG3adcPmW9p8B87X9Ht2kakuPXJfh1o03f7lr6KOcolcFr7sIln5KQeXuHkz8fkZX79PLvNFsubu9nVIusAeMqsRK2kMkoZ7nipS800M44N4rXWhVOlBDOVZoogOOO6rhErAbY0hapKLcbk4ne3i8mvovMJ3dp1bYsurX6aQknxDY0PWdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films</title><source>American Physical Society Journals</source><creator>Will-Cole, A. R. ; Hart, James L. ; Lauter, Valeria ; Grutter, Alexander ; Dubs, Carsten ; Lindner, Morris ; Reimann, Timmy ; Valdez, Nichole R. ; Pearce, Charles Joseph ; Monson, Todd C. ; Cha, Judy J. ; Heiman, Don ; Sun, Nian X.</creator><creatorcontrib>Will-Cole, A. R. ; Hart, James L. ; Lauter, Valeria ; Grutter, Alexander ; Dubs, Carsten ; Lindner, Morris ; Reimann, Timmy ; Valdez, Nichole R. ; Pearce, Charles Joseph ; Monson, Todd C. ; Cha, Judy J. ; Heiman, Don ; Sun, Nian X. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here, in this study, we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.7.054411</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ferromagnetic resonance ; liquid epitaxy ; magnetic insulators ; magnetization dynamics ; MATERIALS SCIENCE ; neutron scattering ; scanning transmission electron microscopy ; solid-state interfaces ; thin films</subject><ispartof>Physical review materials, 2023-05, Vol.7 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000025497640X ; 000000016760929X ; 0009000677705270 ; 0000000309896563 ; 0000000263462814 ; 0000000320661263 ; 0000000297827084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1985365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Will-Cole, A. R.</creatorcontrib><creatorcontrib>Hart, James L.</creatorcontrib><creatorcontrib>Lauter, Valeria</creatorcontrib><creatorcontrib>Grutter, Alexander</creatorcontrib><creatorcontrib>Dubs, Carsten</creatorcontrib><creatorcontrib>Lindner, Morris</creatorcontrib><creatorcontrib>Reimann, Timmy</creatorcontrib><creatorcontrib>Valdez, Nichole R.</creatorcontrib><creatorcontrib>Pearce, Charles Joseph</creatorcontrib><creatorcontrib>Monson, Todd C.</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Heiman, Don</creatorcontrib><creatorcontrib>Sun, Nian X.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films</title><title>Physical review materials</title><description>Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here, in this study, we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.</description><subject>ferromagnetic resonance</subject><subject>liquid epitaxy</subject><subject>magnetic insulators</subject><subject>magnetization dynamics</subject><subject>MATERIALS SCIENCE</subject><subject>neutron scattering</subject><subject>scanning transmission electron microscopy</subject><subject>solid-state interfaces</subject><subject>thin films</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNjkFLAzEUhIMoWGr_Q_S-a16ySZqjFKtCtSJ6EA8lm327jaS7dZNa--9d0YPMYT4GZhhCzoHlAExcPq4P8Qk_723C3tsQc50zWRQAR2TECy0zY6Q4_senZBLjO2MMphK4NiPy9oBN8I0vA9KNbVpM3tHQxYiR2jTQnibcbLG3adcPmW9p8B87X9Ht2kakuPXJfh1o03f7lr6KOcolcFr7sIln5KQeXuHkz8fkZX79PLvNFsubu9nVIusAeMqsRK2kMkoZ7nipS800M44N4rXWhVOlBDOVZoogOOO6rhErAbY0hapKLcbk4ne3i8mvovMJ3dp1bYsurX6aQknxDY0PWdI</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Will-Cole, A. R.</creator><creator>Hart, James L.</creator><creator>Lauter, Valeria</creator><creator>Grutter, Alexander</creator><creator>Dubs, Carsten</creator><creator>Lindner, Morris</creator><creator>Reimann, Timmy</creator><creator>Valdez, Nichole R.</creator><creator>Pearce, Charles Joseph</creator><creator>Monson, Todd C.</creator><creator>Cha, Judy J.</creator><creator>Heiman, Don</creator><creator>Sun, Nian X.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000025497640X</orcidid><orcidid>https://orcid.org/000000016760929X</orcidid><orcidid>https://orcid.org/0009000677705270</orcidid><orcidid>https://orcid.org/0000000309896563</orcidid><orcidid>https://orcid.org/0000000263462814</orcidid><orcidid>https://orcid.org/0000000320661263</orcidid><orcidid>https://orcid.org/0000000297827084</orcidid></search><sort><creationdate>20230531</creationdate><title>Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films</title><author>Will-Cole, A. R. ; Hart, James L. ; Lauter, Valeria ; Grutter, Alexander ; Dubs, Carsten ; Lindner, Morris ; Reimann, Timmy ; Valdez, Nichole R. ; Pearce, Charles Joseph ; Monson, Todd C. ; Cha, Judy J. ; Heiman, Don ; Sun, Nian X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o112t-a5e765696692c2b7b70709c0c0c2f774c6b5198598e132027ffeed31ab946db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ferromagnetic resonance</topic><topic>liquid epitaxy</topic><topic>magnetic insulators</topic><topic>magnetization dynamics</topic><topic>MATERIALS SCIENCE</topic><topic>neutron scattering</topic><topic>scanning transmission electron microscopy</topic><topic>solid-state interfaces</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Will-Cole, A. R.</creatorcontrib><creatorcontrib>Hart, James L.</creatorcontrib><creatorcontrib>Lauter, Valeria</creatorcontrib><creatorcontrib>Grutter, Alexander</creatorcontrib><creatorcontrib>Dubs, Carsten</creatorcontrib><creatorcontrib>Lindner, Morris</creatorcontrib><creatorcontrib>Reimann, Timmy</creatorcontrib><creatorcontrib>Valdez, Nichole R.</creatorcontrib><creatorcontrib>Pearce, Charles Joseph</creatorcontrib><creatorcontrib>Monson, Todd C.</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Heiman, Don</creatorcontrib><creatorcontrib>Sun, Nian X.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Will-Cole, A. R.</au><au>Hart, James L.</au><au>Lauter, Valeria</au><au>Grutter, Alexander</au><au>Dubs, Carsten</au><au>Lindner, Morris</au><au>Reimann, Timmy</au><au>Valdez, Nichole R.</au><au>Pearce, Charles Joseph</au><au>Monson, Todd C.</au><au>Cha, Judy J.</au><au>Heiman, Don</au><au>Sun, Nian X.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films</atitle><jtitle>Physical review materials</jtitle><date>2023-05-31</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here, in this study, we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.7.054411</doi><orcidid>https://orcid.org/000000025497640X</orcidid><orcidid>https://orcid.org/000000016760929X</orcidid><orcidid>https://orcid.org/0009000677705270</orcidid><orcidid>https://orcid.org/0000000309896563</orcidid><orcidid>https://orcid.org/0000000263462814</orcidid><orcidid>https://orcid.org/0000000320661263</orcidid><orcidid>https://orcid.org/0000000297827084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2023-05, Vol.7 (5)
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1985365
source American Physical Society Journals
subjects ferromagnetic resonance
liquid epitaxy
magnetic insulators
magnetization dynamics
MATERIALS SCIENCE
neutron scattering
scanning transmission electron microscopy
solid-state interfaces
thin films
title Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negligible%20magnetic%20losses%20at%20low%20temperatures%20in%20liquid%20phase%20epitaxy%20grown%20Y3Fe5O12%20films&rft.jtitle=Physical%20review%20materials&rft.au=Will-Cole,%20A.%20R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2023-05-31&rft.volume=7&rft.issue=5&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.7.054411&rft_dat=%3Costi%3E1985365%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true