Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection

Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2023-07, Vol.96 (1), p.1, Article 1
Hauptverfasser: De Sterck, H., Falgout, R. D., Krzysik, O. A., Schroder, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Journal of scientific computing
container_volume 96
creator De Sterck, H.
Falgout, R. D.
Krzysik, O. A.
Schroder, J. B.
description Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes in space-time known as characteristic components. We propose an alternative coarse-grid operator that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the proposed coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate speed-up over sequential time-stepping.
doi_str_mv 10.1007/s10915-023-02223-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1985223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918317013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ac07669740b6f19c0a772af61db019ea2a337bdb68f4d71ca9f090dc4cb938273</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOi5-hks7vZHEv9hBZB6lFCNpu0Ke2mJqmgv95sV_DmYWYO87zD8CB0SeCGALDbQICTEkNOU-WpF0doREpGMas4OUYjqOsSs4IVp-gshDUA8JrnI_R-b4xVVncxm-830S69bbNX3e5VtK7DtsMLu9WZcT6b67hyLXYGz2ynQ3Zng_I62m_ZoyFzJusX0meT9lMf8ufoxMhN0Be_c4zeHu4X0yc8e3l8nk5mWFEOEUsFrKo4K6CpDOEKJGO5NBVpGyBcy1xSypq2qWpTtIwoyQ1waFWhGk7rnNExuhruuhCtCMpGrVbKdV16QxBel0lJgq4HaOfdx16HKNZu77v0l8g5qSlhQHoqHyjlXQheG7Hzdiv9lyAgetdicC2Sa3FwLYoUokMoJLhbav93-p_UDzIjgVI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918317013</pqid></control><display><type>article</type><title>Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>De Sterck, H. ; Falgout, R. D. ; Krzysik, O. A. ; Schroder, J. B.</creator><creatorcontrib>De Sterck, H. ; Falgout, R. D. ; Krzysik, O. A. ; Schroder, J. B. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes in space-time known as characteristic components. We propose an alternative coarse-grid operator that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the proposed coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate speed-up over sequential time-stepping.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-023-02223-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advection ; advection equation ; Algorithms ; Approximation ; Coarsening ; Computational Mathematics and Numerical Analysis ; Convergence ; Discretization ; Error correction ; hyperbolic PDE ; Iterative methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; MATHEMATICS AND COMPUTING ; Mathematics and Statistics ; Method of lines ; Methods ; MGRIT ; multigrid ; Multigrid methods ; Optimization ; Parallel-in-time ; parareal ; Partial differential equations ; Reduction ; Robustness (mathematics) ; Runge-Kutta method ; Spacetime ; Theoretical ; Truncation errors</subject><ispartof>Journal of scientific computing, 2023-07, Vol.96 (1), p.1, Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ac07669740b6f19c0a772af61db019ea2a337bdb68f4d71ca9f090dc4cb938273</citedby><cites>FETCH-LOGICAL-c390t-ac07669740b6f19c0a772af61db019ea2a337bdb68f4d71ca9f090dc4cb938273</cites><orcidid>0000-0002-1641-932X ; 0000-0002-1076-9206 ; 0000-0001-7880-6512 ; 0000-0003-4884-0087 ; 0000000210769206 ; 000000021641932X ; 0000000348840087 ; 0000000178806512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-023-02223-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918317013?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1985223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Sterck, H.</creatorcontrib><creatorcontrib>Falgout, R. D.</creatorcontrib><creatorcontrib>Krzysik, O. A.</creatorcontrib><creatorcontrib>Schroder, J. B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes in space-time known as characteristic components. We propose an alternative coarse-grid operator that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the proposed coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate speed-up over sequential time-stepping.</description><subject>Advection</subject><subject>advection equation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Coarsening</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Error correction</subject><subject>hyperbolic PDE</subject><subject>Iterative methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Mathematics and Statistics</subject><subject>Method of lines</subject><subject>Methods</subject><subject>MGRIT</subject><subject>multigrid</subject><subject>Multigrid methods</subject><subject>Optimization</subject><subject>Parallel-in-time</subject><subject>parareal</subject><subject>Partial differential equations</subject><subject>Reduction</subject><subject>Robustness (mathematics)</subject><subject>Runge-Kutta method</subject><subject>Spacetime</subject><subject>Theoretical</subject><subject>Truncation errors</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOi5-hks7vZHEv9hBZB6lFCNpu0Ke2mJqmgv95sV_DmYWYO87zD8CB0SeCGALDbQICTEkNOU-WpF0doREpGMas4OUYjqOsSs4IVp-gshDUA8JrnI_R-b4xVVncxm-830S69bbNX3e5VtK7DtsMLu9WZcT6b67hyLXYGz2ynQ3Zng_I62m_ZoyFzJusX0meT9lMf8ufoxMhN0Be_c4zeHu4X0yc8e3l8nk5mWFEOEUsFrKo4K6CpDOEKJGO5NBVpGyBcy1xSypq2qWpTtIwoyQ1waFWhGk7rnNExuhruuhCtCMpGrVbKdV16QxBel0lJgq4HaOfdx16HKNZu77v0l8g5qSlhQHoqHyjlXQheG7Hzdiv9lyAgetdicC2Sa3FwLYoUokMoJLhbav93-p_UDzIjgVI</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>De Sterck, H.</creator><creator>Falgout, R. D.</creator><creator>Krzysik, O. A.</creator><creator>Schroder, J. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1641-932X</orcidid><orcidid>https://orcid.org/0000-0002-1076-9206</orcidid><orcidid>https://orcid.org/0000-0001-7880-6512</orcidid><orcidid>https://orcid.org/0000-0003-4884-0087</orcidid><orcidid>https://orcid.org/0000000210769206</orcidid><orcidid>https://orcid.org/000000021641932X</orcidid><orcidid>https://orcid.org/0000000348840087</orcidid><orcidid>https://orcid.org/0000000178806512</orcidid></search><sort><creationdate>20230701</creationdate><title>Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection</title><author>De Sterck, H. ; Falgout, R. D. ; Krzysik, O. A. ; Schroder, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ac07669740b6f19c0a772af61db019ea2a337bdb68f4d71ca9f090dc4cb938273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>advection equation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Coarsening</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Error correction</topic><topic>hyperbolic PDE</topic><topic>Iterative methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Mathematics and Statistics</topic><topic>Method of lines</topic><topic>Methods</topic><topic>MGRIT</topic><topic>multigrid</topic><topic>Multigrid methods</topic><topic>Optimization</topic><topic>Parallel-in-time</topic><topic>parareal</topic><topic>Partial differential equations</topic><topic>Reduction</topic><topic>Robustness (mathematics)</topic><topic>Runge-Kutta method</topic><topic>Spacetime</topic><topic>Theoretical</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Sterck, H.</creatorcontrib><creatorcontrib>Falgout, R. D.</creatorcontrib><creatorcontrib>Krzysik, O. A.</creatorcontrib><creatorcontrib>Schroder, J. B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Sterck, H.</au><au>Falgout, R. D.</au><au>Krzysik, O. A.</au><au>Schroder, J. B.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>96</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>1</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes in space-time known as characteristic components. We propose an alternative coarse-grid operator that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the proposed coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate speed-up over sequential time-stepping.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-023-02223-4</doi><orcidid>https://orcid.org/0000-0002-1641-932X</orcidid><orcidid>https://orcid.org/0000-0002-1076-9206</orcidid><orcidid>https://orcid.org/0000-0001-7880-6512</orcidid><orcidid>https://orcid.org/0000-0003-4884-0087</orcidid><orcidid>https://orcid.org/0000000210769206</orcidid><orcidid>https://orcid.org/000000021641932X</orcidid><orcidid>https://orcid.org/0000000348840087</orcidid><orcidid>https://orcid.org/0000000178806512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2023-07, Vol.96 (1), p.1, Article 1
issn 0885-7474
1573-7691
language eng
recordid cdi_osti_scitechconnect_1985223
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Advection
advection equation
Algorithms
Approximation
Coarsening
Computational Mathematics and Numerical Analysis
Convergence
Discretization
Error correction
hyperbolic PDE
Iterative methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
MATHEMATICS AND COMPUTING
Mathematics and Statistics
Method of lines
Methods
MGRIT
multigrid
Multigrid methods
Optimization
Parallel-in-time
parareal
Partial differential equations
Reduction
Robustness (mathematics)
Runge-Kutta method
Spacetime
Theoretical
Truncation errors
title Efficient Multigrid Reduction-in-Time for Method-of-Lines Discretizations of Linear Advection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multigrid%20Reduction-in-Time%20for%20Method-of-Lines%20Discretizations%20of%20Linear%20Advection&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=De%20Sterck,%20H.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-07-01&rft.volume=96&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=1&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-023-02223-4&rft_dat=%3Cproquest_osti_%3E2918317013%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918317013&rft_id=info:pmid/&rfr_iscdi=true