Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting

Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2023-04, Vol.6 (7), p.3756-3768
Hauptverfasser: McGee, Shannon, Fest, Andres, Chandler, Cierra, Nova, Nabila N., Lei, Yu, Goff, James, Sinnott, Susan B., Dabo, Ismaila, Terrones, Mauricio, Zarzar, Lauren D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3768
container_issue 7
container_start_page 3756
container_title ACS applied energy materials
container_volume 6
creator McGee, Shannon
Fest, Andres
Chandler, Cierra
Nova, Nabila N.
Lei, Yu
Goff, James
Sinnott, Susan B.
Dabo, Ismaila
Terrones, Mauricio
Zarzar, Lauren D.
description Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electrochemical cells for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, we investigate the synthesis, composition, performance, and mechanism of multimetal catalysts serving dual functionality in both OER and HER of water electrolysis. Through a laser synthesis method, we synthesized heterogeneous catalysts of nanocrystalline multimetallic alloy pockets embedded within an amorphous oxide matrix. We evaluated the performance and composition of a range of mixed transition-metal oxide materials for both OER and HER, ultimately synthesizing a Cr0.01Fe0.27Co0.34Ni0.38O x /C y catalyst that has a stable, high-rate, and competitive overall water splitting performance of 1.76 V at 100 mA cm–2 in an alkaline medium. Using density functional theory to gain insight as the active site and mechanism, we propose that the inclusion of a minor amount of Cr increases the degeneracy of energetic states that lowers the cost of forming the O 2 p–d bond and H 1 s–d bond due to the hybridization of s, p, and d orbitals from Cr. Using a two-electrode water electrolysis cell with a constant potential of 1.636 V to mimic the setup for fuel production, we found the catalyst to be stable at 14–15 mA cm–2 for 40 h. This laser synthesis method allowing for facile and rapid synthesis of complex multimetal systems demonstrates how doping a Fe, Co, and Ni heterogeneous amorphous/nanocrystalline structure with small amounts of Cr is important for bifunctional catalytic behavior, particularly for increasing HER functionality in advancing our understanding for future electrocatalytic design.
doi_str_mv 10.1021/acsaem.2c03973
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1985210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g34771682</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-6c19f9139411535977b64e9036aec75e4efa135b1f093a7c3ac804eb1d40abb53</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJg0V49B4_C1rzNZrc5av2ESg9aegxvY6Ip201JUqH_3pTtwYunN2-YGZgh5ArYBFgJt6gjms2k1IzLhp-QUSmaqmCyLk__4HMyjnHNGAMJdSnliCwfXDA60TlGE-gquOT6L-otfdt1yW1Mwo7eO7vrdXK-z88MM7WPKVLrA138mIBdR1eYsv1927l0CLgkZxa7aMbHe0GWT48fs5divnh-nd3NC-QVpKLWIK0ELisAwYVsmraujGS8RqMbYSpjEbhowTLJsdEc9ZRVpoXPimHbCn5BrodcH5NTUbtk9Lf2fZ8rKZBTUQLLoskg0sHHGIxV2-A2GPYKmDqMp4bx1HG8bLgZDJlXa78LuXf8T_wLEEVxYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting</title><source>ACS Publications</source><creator>McGee, Shannon ; Fest, Andres ; Chandler, Cierra ; Nova, Nabila N. ; Lei, Yu ; Goff, James ; Sinnott, Susan B. ; Dabo, Ismaila ; Terrones, Mauricio ; Zarzar, Lauren D.</creator><creatorcontrib>McGee, Shannon ; Fest, Andres ; Chandler, Cierra ; Nova, Nabila N. ; Lei, Yu ; Goff, James ; Sinnott, Susan B. ; Dabo, Ismaila ; Terrones, Mauricio ; Zarzar, Lauren D. ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electrochemical cells for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, we investigate the synthesis, composition, performance, and mechanism of multimetal catalysts serving dual functionality in both OER and HER of water electrolysis. Through a laser synthesis method, we synthesized heterogeneous catalysts of nanocrystalline multimetallic alloy pockets embedded within an amorphous oxide matrix. We evaluated the performance and composition of a range of mixed transition-metal oxide materials for both OER and HER, ultimately synthesizing a Cr0.01Fe0.27Co0.34Ni0.38O x /C y catalyst that has a stable, high-rate, and competitive overall water splitting performance of 1.76 V at 100 mA cm–2 in an alkaline medium. Using density functional theory to gain insight as the active site and mechanism, we propose that the inclusion of a minor amount of Cr increases the degeneracy of energetic states that lowers the cost of forming the O 2 p–d bond and H 1 s–d bond due to the hybridization of s, p, and d orbitals from Cr. Using a two-electrode water electrolysis cell with a constant potential of 1.636 V to mimic the setup for fuel production, we found the catalyst to be stable at 14–15 mA cm–2 for 40 h. This laser synthesis method allowing for facile and rapid synthesis of complex multimetal systems demonstrates how doping a Fe, Co, and Ni heterogeneous amorphous/nanocrystalline structure with small amounts of Cr is important for bifunctional catalytic behavior, particularly for increasing HER functionality in advancing our understanding for future electrocatalytic design.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c03973</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>08 HYDROGEN ; catalysts ; evolution reaction ; hydrogen evolution reaction ; laser writing ; multimetal catalysis ; nanostructured materials ; oxygen evolution reaction ; precursors ; radiology ; testing and assessment ; transition-metal oxides ; water splitting</subject><ispartof>ACS applied energy materials, 2023-04, Vol.6 (7), p.3756-3768</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-6c19f9139411535977b64e9036aec75e4efa135b1f093a7c3ac804eb1d40abb53</citedby><cites>FETCH-LOGICAL-a341t-6c19f9139411535977b64e9036aec75e4efa135b1f093a7c3ac804eb1d40abb53</cites><orcidid>0000-0003-0742-030X ; 0000-0001-7026-7200 ; 0000-0003-0010-2851 ; 0000-0003-4693-7408 ; 0000-0002-3287-3602 ; 0000000232873602 ; 0000000170267200 ; 0000000300102851 ; 0000000346937408 ; 000000030742030X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c03973$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c03973$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1985210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McGee, Shannon</creatorcontrib><creatorcontrib>Fest, Andres</creatorcontrib><creatorcontrib>Chandler, Cierra</creatorcontrib><creatorcontrib>Nova, Nabila N.</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Goff, James</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Dabo, Ismaila</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Zarzar, Lauren D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electrochemical cells for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, we investigate the synthesis, composition, performance, and mechanism of multimetal catalysts serving dual functionality in both OER and HER of water electrolysis. Through a laser synthesis method, we synthesized heterogeneous catalysts of nanocrystalline multimetallic alloy pockets embedded within an amorphous oxide matrix. We evaluated the performance and composition of a range of mixed transition-metal oxide materials for both OER and HER, ultimately synthesizing a Cr0.01Fe0.27Co0.34Ni0.38O x /C y catalyst that has a stable, high-rate, and competitive overall water splitting performance of 1.76 V at 100 mA cm–2 in an alkaline medium. Using density functional theory to gain insight as the active site and mechanism, we propose that the inclusion of a minor amount of Cr increases the degeneracy of energetic states that lowers the cost of forming the O 2 p–d bond and H 1 s–d bond due to the hybridization of s, p, and d orbitals from Cr. Using a two-electrode water electrolysis cell with a constant potential of 1.636 V to mimic the setup for fuel production, we found the catalyst to be stable at 14–15 mA cm–2 for 40 h. This laser synthesis method allowing for facile and rapid synthesis of complex multimetal systems demonstrates how doping a Fe, Co, and Ni heterogeneous amorphous/nanocrystalline structure with small amounts of Cr is important for bifunctional catalytic behavior, particularly for increasing HER functionality in advancing our understanding for future electrocatalytic design.</description><subject>08 HYDROGEN</subject><subject>catalysts</subject><subject>evolution reaction</subject><subject>hydrogen evolution reaction</subject><subject>laser writing</subject><subject>multimetal catalysis</subject><subject>nanostructured materials</subject><subject>oxygen evolution reaction</subject><subject>precursors</subject><subject>radiology</subject><subject>testing and assessment</subject><subject>transition-metal oxides</subject><subject>water splitting</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJg0V49B4_C1rzNZrc5av2ESg9aegxvY6Ip201JUqH_3pTtwYunN2-YGZgh5ArYBFgJt6gjms2k1IzLhp-QUSmaqmCyLk__4HMyjnHNGAMJdSnliCwfXDA60TlGE-gquOT6L-otfdt1yW1Mwo7eO7vrdXK-z88MM7WPKVLrA138mIBdR1eYsv1927l0CLgkZxa7aMbHe0GWT48fs5divnh-nd3NC-QVpKLWIK0ELisAwYVsmraujGS8RqMbYSpjEbhowTLJsdEc9ZRVpoXPimHbCn5BrodcH5NTUbtk9Lf2fZ8rKZBTUQLLoskg0sHHGIxV2-A2GPYKmDqMp4bx1HG8bLgZDJlXa78LuXf8T_wLEEVxYA</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>McGee, Shannon</creator><creator>Fest, Andres</creator><creator>Chandler, Cierra</creator><creator>Nova, Nabila N.</creator><creator>Lei, Yu</creator><creator>Goff, James</creator><creator>Sinnott, Susan B.</creator><creator>Dabo, Ismaila</creator><creator>Terrones, Mauricio</creator><creator>Zarzar, Lauren D.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0742-030X</orcidid><orcidid>https://orcid.org/0000-0001-7026-7200</orcidid><orcidid>https://orcid.org/0000-0003-0010-2851</orcidid><orcidid>https://orcid.org/0000-0003-4693-7408</orcidid><orcidid>https://orcid.org/0000-0002-3287-3602</orcidid><orcidid>https://orcid.org/0000000232873602</orcidid><orcidid>https://orcid.org/0000000170267200</orcidid><orcidid>https://orcid.org/0000000300102851</orcidid><orcidid>https://orcid.org/0000000346937408</orcidid><orcidid>https://orcid.org/000000030742030X</orcidid></search><sort><creationdate>20230410</creationdate><title>Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting</title><author>McGee, Shannon ; Fest, Andres ; Chandler, Cierra ; Nova, Nabila N. ; Lei, Yu ; Goff, James ; Sinnott, Susan B. ; Dabo, Ismaila ; Terrones, Mauricio ; Zarzar, Lauren D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-6c19f9139411535977b64e9036aec75e4efa135b1f093a7c3ac804eb1d40abb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>08 HYDROGEN</topic><topic>catalysts</topic><topic>evolution reaction</topic><topic>hydrogen evolution reaction</topic><topic>laser writing</topic><topic>multimetal catalysis</topic><topic>nanostructured materials</topic><topic>oxygen evolution reaction</topic><topic>precursors</topic><topic>radiology</topic><topic>testing and assessment</topic><topic>transition-metal oxides</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGee, Shannon</creatorcontrib><creatorcontrib>Fest, Andres</creatorcontrib><creatorcontrib>Chandler, Cierra</creatorcontrib><creatorcontrib>Nova, Nabila N.</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Goff, James</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Dabo, Ismaila</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Zarzar, Lauren D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGee, Shannon</au><au>Fest, Andres</au><au>Chandler, Cierra</au><au>Nova, Nabila N.</au><au>Lei, Yu</au><au>Goff, James</au><au>Sinnott, Susan B.</au><au>Dabo, Ismaila</au><au>Terrones, Mauricio</au><au>Zarzar, Lauren D.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>6</volume><issue>7</issue><spage>3756</spage><epage>3768</epage><pages>3756-3768</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electrochemical cells for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, we investigate the synthesis, composition, performance, and mechanism of multimetal catalysts serving dual functionality in both OER and HER of water electrolysis. Through a laser synthesis method, we synthesized heterogeneous catalysts of nanocrystalline multimetallic alloy pockets embedded within an amorphous oxide matrix. We evaluated the performance and composition of a range of mixed transition-metal oxide materials for both OER and HER, ultimately synthesizing a Cr0.01Fe0.27Co0.34Ni0.38O x /C y catalyst that has a stable, high-rate, and competitive overall water splitting performance of 1.76 V at 100 mA cm–2 in an alkaline medium. Using density functional theory to gain insight as the active site and mechanism, we propose that the inclusion of a minor amount of Cr increases the degeneracy of energetic states that lowers the cost of forming the O 2 p–d bond and H 1 s–d bond due to the hybridization of s, p, and d orbitals from Cr. Using a two-electrode water electrolysis cell with a constant potential of 1.636 V to mimic the setup for fuel production, we found the catalyst to be stable at 14–15 mA cm–2 for 40 h. This laser synthesis method allowing for facile and rapid synthesis of complex multimetal systems demonstrates how doping a Fe, Co, and Ni heterogeneous amorphous/nanocrystalline structure with small amounts of Cr is important for bifunctional catalytic behavior, particularly for increasing HER functionality in advancing our understanding for future electrocatalytic design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c03973</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0742-030X</orcidid><orcidid>https://orcid.org/0000-0001-7026-7200</orcidid><orcidid>https://orcid.org/0000-0003-0010-2851</orcidid><orcidid>https://orcid.org/0000-0003-4693-7408</orcidid><orcidid>https://orcid.org/0000-0002-3287-3602</orcidid><orcidid>https://orcid.org/0000000232873602</orcidid><orcidid>https://orcid.org/0000000170267200</orcidid><orcidid>https://orcid.org/0000000300102851</orcidid><orcidid>https://orcid.org/0000000346937408</orcidid><orcidid>https://orcid.org/000000030742030X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2023-04, Vol.6 (7), p.3756-3768
issn 2574-0962
2574-0962
language eng
recordid cdi_osti_scitechconnect_1985210
source ACS Publications
subjects 08 HYDROGEN
catalysts
evolution reaction
hydrogen evolution reaction
laser writing
multimetal catalysis
nanostructured materials
oxygen evolution reaction
precursors
radiology
testing and assessment
transition-metal oxides
water splitting
title Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Laser%20Writing%20of%20Multimetal%20Bifunctional%20Catalysts%20for%20Overall%20Water%20Splitting&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=McGee,%20Shannon&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2023-04-10&rft.volume=6&rft.issue=7&rft.spage=3756&rft.epage=3768&rft.pages=3756-3768&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c03973&rft_dat=%3Cacs_osti_%3Eg34771682%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true