A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2
Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and cha...
Gespeichert in:
Veröffentlicht in: | ACS omega 2023-06, Vol.8 (24), p.21871-21884 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21884 |
---|---|
container_issue | 24 |
container_start_page | 21871 |
container_title | ACS omega |
container_volume | 8 |
creator | Sandholtz, Sarah H. Drocco, Jeffrey A. Zemla, Adam T. Torres, Marisa W. Silva, Mary S. Allen, Jonathan E. |
description | Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and characterization of binding sites in viral proteins along with the key chemical features, which we call chemotypes, of the compounds predicted to interact with those same sites. The composition of source organisms for the structural models associated with an individual binding site is used to assess the site’s degree of structural conservation across different species, including other viruses and humans. We propose a search strategy for novel therapeutics that involves the selection of molecules preferentially containing the most structurally rich chemotypes identified by our algorithm. While we demonstrate the pipeline on SARS-CoV-2, it is generalizable to any new virus, as long as either experimentally solved structures for its proteins are available or sufficiently accurate predicted structures can be constructed. |
doi_str_mv | 10.1021/acsomega.3c01621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1983998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825503714</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-3c818f382e5c7e9f5ef287f6d566c505bc5f85b286911f711c2624fd184c0e953</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EotXQPStkddUFKf6JE2c5RJSOVKmIAbaWx7nuuErsNHYWw4pX6CvyJHU7U9QNC8uWz3eurs5B6D0l55Qw-kmbGAa40efcEFox-gods7ImBeUlf_3ifYROYrwlJEOSSVa9RUe85qThUh4jv8RtGMY56eSC1z3-5kbonQecAl514JOzO6x9h9utnrRJMLnfgD873zl_g9cuQXySVz5LWX_8bbcwhLQbs-Q8Xi-_r4s2_Pr75569Q2-s7iOcHO4F-nnx5Ud7WVxdf121y6tCl0SkghtJpeWSgTA1NFaAZbK2VSeqyggiNkZYKTZMVg2ltqbUsIqVtqOyNAQawRfodD83xORUNHlNszXBezBJ0UbyJp8FOttD4xTuZohJDS4a6HvtIcxR5bCEILymZUbJHjVTiHECq8bJDXraKUrUYxvquQ11aCNbPhymz5sBun-G5-wz8HEPZKu6DfOU44__n_cANc6VrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825503714</pqid></control><display><type>article</type><title>A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Sandholtz, Sarah H. ; Drocco, Jeffrey A. ; Zemla, Adam T. ; Torres, Marisa W. ; Silva, Mary S. ; Allen, Jonathan E.</creator><creatorcontrib>Sandholtz, Sarah H. ; Drocco, Jeffrey A. ; Zemla, Adam T. ; Torres, Marisa W. ; Silva, Mary S. ; Allen, Jonathan E. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and characterization of binding sites in viral proteins along with the key chemical features, which we call chemotypes, of the compounds predicted to interact with those same sites. The composition of source organisms for the structural models associated with an individual binding site is used to assess the site’s degree of structural conservation across different species, including other viruses and humans. We propose a search strategy for novel therapeutics that involves the selection of molecules preferentially containing the most structurally rich chemotypes identified by our algorithm. While we demonstrate the pipeline on SARS-CoV-2, it is generalizable to any new virus, as long as either experimentally solved structures for its proteins are available or sufficiently accurate predicted structures can be constructed.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.3c01621</identifier><identifier>PMID: 37309388</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>BASIC BIOLOGICAL SCIENCES ; ligands ; medical science ; molecular structure ; protein identification ; protein structure ; SARS-CoV-2</subject><ispartof>ACS omega, 2023-06, Vol.8 (24), p.21871-21884</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-3c818f382e5c7e9f5ef287f6d566c505bc5f85b286911f711c2624fd184c0e953</citedby><cites>FETCH-LOGICAL-a405t-3c818f382e5c7e9f5ef287f6d566c505bc5f85b286911f711c2624fd184c0e953</cites><orcidid>0000-0003-0504-8647 ; 0000-0001-6605-4931 ; 0000-0002-4359-8263 ; 0000000305048647 ; 0000000243598263 ; 0000000166054931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.3c01621$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.3c01621$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27080,27924,27925,56762,56812</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37309388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1983998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandholtz, Sarah H.</creatorcontrib><creatorcontrib>Drocco, Jeffrey A.</creatorcontrib><creatorcontrib>Zemla, Adam T.</creatorcontrib><creatorcontrib>Torres, Marisa W.</creatorcontrib><creatorcontrib>Silva, Mary S.</creatorcontrib><creatorcontrib>Allen, Jonathan E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and characterization of binding sites in viral proteins along with the key chemical features, which we call chemotypes, of the compounds predicted to interact with those same sites. The composition of source organisms for the structural models associated with an individual binding site is used to assess the site’s degree of structural conservation across different species, including other viruses and humans. We propose a search strategy for novel therapeutics that involves the selection of molecules preferentially containing the most structurally rich chemotypes identified by our algorithm. While we demonstrate the pipeline on SARS-CoV-2, it is generalizable to any new virus, as long as either experimentally solved structures for its proteins are available or sufficiently accurate predicted structures can be constructed.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>ligands</subject><subject>medical science</subject><subject>molecular structure</subject><subject>protein identification</subject><subject>protein structure</subject><subject>SARS-CoV-2</subject><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1kc1u1DAUhS0EotXQPStkddUFKf6JE2c5RJSOVKmIAbaWx7nuuErsNHYWw4pX6CvyJHU7U9QNC8uWz3eurs5B6D0l55Qw-kmbGAa40efcEFox-gods7ImBeUlf_3ifYROYrwlJEOSSVa9RUe85qThUh4jv8RtGMY56eSC1z3-5kbonQecAl514JOzO6x9h9utnrRJMLnfgD873zl_g9cuQXySVz5LWX_8bbcwhLQbs-Q8Xi-_r4s2_Pr75569Q2-s7iOcHO4F-nnx5Ud7WVxdf121y6tCl0SkghtJpeWSgTA1NFaAZbK2VSeqyggiNkZYKTZMVg2ltqbUsIqVtqOyNAQawRfodD83xORUNHlNszXBezBJ0UbyJp8FOttD4xTuZohJDS4a6HvtIcxR5bCEILymZUbJHjVTiHECq8bJDXraKUrUYxvquQ11aCNbPhymz5sBun-G5-wz8HEPZKu6DfOU44__n_cANc6VrQ</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Sandholtz, Sarah H.</creator><creator>Drocco, Jeffrey A.</creator><creator>Zemla, Adam T.</creator><creator>Torres, Marisa W.</creator><creator>Silva, Mary S.</creator><creator>Allen, Jonathan E.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0504-8647</orcidid><orcidid>https://orcid.org/0000-0001-6605-4931</orcidid><orcidid>https://orcid.org/0000-0002-4359-8263</orcidid><orcidid>https://orcid.org/0000000305048647</orcidid><orcidid>https://orcid.org/0000000243598263</orcidid><orcidid>https://orcid.org/0000000166054931</orcidid></search><sort><creationdate>20230620</creationdate><title>A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2</title><author>Sandholtz, Sarah H. ; Drocco, Jeffrey A. ; Zemla, Adam T. ; Torres, Marisa W. ; Silva, Mary S. ; Allen, Jonathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-3c818f382e5c7e9f5ef287f6d566c505bc5f85b286911f711c2624fd184c0e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>ligands</topic><topic>medical science</topic><topic>molecular structure</topic><topic>protein identification</topic><topic>protein structure</topic><topic>SARS-CoV-2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandholtz, Sarah H.</creatorcontrib><creatorcontrib>Drocco, Jeffrey A.</creatorcontrib><creatorcontrib>Zemla, Adam T.</creatorcontrib><creatorcontrib>Torres, Marisa W.</creatorcontrib><creatorcontrib>Silva, Mary S.</creatorcontrib><creatorcontrib>Allen, Jonathan E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandholtz, Sarah H.</au><au>Drocco, Jeffrey A.</au><au>Zemla, Adam T.</au><au>Torres, Marisa W.</au><au>Silva, Mary S.</au><au>Allen, Jonathan E.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>8</volume><issue>24</issue><spage>21871</spage><epage>21884</epage><pages>21871-21884</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and characterization of binding sites in viral proteins along with the key chemical features, which we call chemotypes, of the compounds predicted to interact with those same sites. The composition of source organisms for the structural models associated with an individual binding site is used to assess the site’s degree of structural conservation across different species, including other viruses and humans. We propose a search strategy for novel therapeutics that involves the selection of molecules preferentially containing the most structurally rich chemotypes identified by our algorithm. While we demonstrate the pipeline on SARS-CoV-2, it is generalizable to any new virus, as long as either experimentally solved structures for its proteins are available or sufficiently accurate predicted structures can be constructed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37309388</pmid><doi>10.1021/acsomega.3c01621</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0504-8647</orcidid><orcidid>https://orcid.org/0000-0001-6605-4931</orcidid><orcidid>https://orcid.org/0000-0002-4359-8263</orcidid><orcidid>https://orcid.org/0000000305048647</orcidid><orcidid>https://orcid.org/0000000243598263</orcidid><orcidid>https://orcid.org/0000000166054931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2023-06, Vol.8 (24), p.21871-21884 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_osti_scitechconnect_1983998 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; American Chemical Society (ACS) Open Access; PubMed Central |
subjects | BASIC BIOLOGICAL SCIENCES ligands medical science molecular structure protein identification protein structure SARS-CoV-2 |
title | A Computational Pipeline to Identify and Characterize Binding Sites and Interacting Chemotypes in SARS-CoV‑2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Pipeline%20to%20Identify%20and%20Characterize%20Binding%20Sites%20and%20Interacting%20Chemotypes%20in%20SARS-CoV%E2%80%912&rft.jtitle=ACS%20omega&rft.au=Sandholtz,%20Sarah%20H.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-06-20&rft.volume=8&rft.issue=24&rft.spage=21871&rft.epage=21884&rft.pages=21871-21884&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.3c01621&rft_dat=%3Cproquest_osti_%3E2825503714%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825503714&rft_id=info:pmid/37309388&rfr_iscdi=true |