Anatomy of a Summertime Convective Event over the Arabian Region

This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2023-04, Vol.151 (4), p.989-1004
Hauptverfasser: Gopalakrishnan, Deepak, Taraphdar, Sourav, Pauluis, Olivier M., Xue, Lulin, Ajayamohan, R. S., Al Shamsi, Noor, Chen, Sisi, Lee, Jared A., Grabowski, Wojciech W., Liu, Changhai, Tessendorf, Sarah A., Rasmussen, Roy M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 989
container_title Monthly weather review
container_volume 151
creator Gopalakrishnan, Deepak
Taraphdar, Sourav
Pauluis, Olivier M.
Xue, Lulin
Ajayamohan, R. S.
Al Shamsi, Noor
Chen, Sisi
Lee, Jared A.
Grabowski, Wojciech W.
Liu, Changhai
Tessendorf, Sarah A.
Rasmussen, Roy M.
description This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical Convective Model, version 2, (ACM2) scheme; and the quasi-normal scale-elimination (QNSE) scheme. Convection initiates near the Al Hajar Mountains of northern Oman at around 1100 local time (LT; 0700 UTC) and propagates northwestward. A nonorographic convective band along the west coast of the United Arab Emirates (UAE) develops after 1500 LT as a result of the convergence of cold pools with the sea breeze from the Arabian Gulf. The model simulation employing the QNSE scheme simulates the convection initiation and propagation well. Although the MYNN and ACM2 simulations show convective initiation near the Al Hajar Mountains, they fail to simulate the development of the convective band along the UAE west coast. The MYNN run simulates colder near-surface temperatures and a weaker sea breeze, whereas the ACM2 run simulates a stronger sea breeze but a drier lower troposphere. Sensitivity simulations using horizontal grid spacings of 9 and 3 km show that lower-resolution runs develop broader convective structures and weaker cold pools and horizontal wind divergence, affecting the development of convection along the west coast of the UAE. The 1-km run using the QNSE PBL scheme realistically captures the sequence of events that leads to the moist convection over the UAE and adjacent mountains.
doi_str_mv 10.1175/MWR-D-22-0082.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1983584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807032030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f348375d5a8895c4a856fa253d5f3a62e1268d10f0204fc544b8828b4874d9aa3</originalsourceid><addsrcrecordid>eNotkEtLAzEYRYMoWKtrt0HXab-8ZtKdpa0PqAhVcRnSTGKnOEnNpAP9906pq7s5XA4HoVsKI0pLOX79WpE5YYwAKDaiZ2hAJQMCYsLP0QCAlQQKIS7RVdtuAaAoBBugh2kwOTYHHD02-H3fNC7lunF4FkPnbK47hxedCxnHziWcNw5Pk1nXJuCV-65juEYX3vy07uZ_h-jzcfExeybLt6eX2XRJLOdlJp4LxUtZSaPURFphlCy8YZJX0nNTMEdZoSoKHhgIb6UQa6WYWgtVimpiDB-iu9NvbHOtW1tnZzc2htBLajpRXCrRQ_cnaJfi7961WW_jPoXeSzMFJXAGHHpqfKJsim2bnNe7VDcmHTQFfWyp-5Z6rhnTx5aa8j8SE2Sk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807032030</pqid></control><display><type>article</type><title>Anatomy of a Summertime Convective Event over the Arabian Region</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gopalakrishnan, Deepak ; Taraphdar, Sourav ; Pauluis, Olivier M. ; Xue, Lulin ; Ajayamohan, R. S. ; Al Shamsi, Noor ; Chen, Sisi ; Lee, Jared A. ; Grabowski, Wojciech W. ; Liu, Changhai ; Tessendorf, Sarah A. ; Rasmussen, Roy M.</creator><creatorcontrib>Gopalakrishnan, Deepak ; Taraphdar, Sourav ; Pauluis, Olivier M. ; Xue, Lulin ; Ajayamohan, R. S. ; Al Shamsi, Noor ; Chen, Sisi ; Lee, Jared A. ; Grabowski, Wojciech W. ; Liu, Changhai ; Tessendorf, Sarah A. ; Rasmussen, Roy M. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical Convective Model, version 2, (ACM2) scheme; and the quasi-normal scale-elimination (QNSE) scheme. Convection initiates near the Al Hajar Mountains of northern Oman at around 1100 local time (LT; 0700 UTC) and propagates northwestward. A nonorographic convective band along the west coast of the United Arab Emirates (UAE) develops after 1500 LT as a result of the convergence of cold pools with the sea breeze from the Arabian Gulf. The model simulation employing the QNSE scheme simulates the convection initiation and propagation well. Although the MYNN and ACM2 simulations show convective initiation near the Al Hajar Mountains, they fail to simulate the development of the convective band along the UAE west coast. The MYNN run simulates colder near-surface temperatures and a weaker sea breeze, whereas the ACM2 run simulates a stronger sea breeze but a drier lower troposphere. Sensitivity simulations using horizontal grid spacings of 9 and 3 km show that lower-resolution runs develop broader convective structures and weaker cold pools and horizontal wind divergence, affecting the development of convection along the west coast of the UAE. The 1-km run using the QNSE PBL scheme realistically captures the sequence of events that leads to the moist convection over the UAE and adjacent mountains.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-22-0082.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Aerosols ; Airports ; Cloud seeding ; Cloud-resolving models ; Cold pools ; Convection ; Convective event ; Convective initiation ; Deep convection ; Divergence ; ENVIRONMENTAL SCIENCES ; Heat ; Isentropic analysis ; Lower troposphere ; Moist convection ; Mountains ; Orographic effects ; Pbl parameterization ; Pools ; Precipitation ; Rain ; Sea breezes ; Simulation ; Summer ; Surface temperature ; Troposphere ; Universal time ; WRF model</subject><ispartof>Monthly weather review, 2023-04, Vol.151 (4), p.989-1004</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f348375d5a8895c4a856fa253d5f3a62e1268d10f0204fc544b8828b4874d9aa3</citedby><orcidid>0000-0002-3276-625X ; 000000023276625X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1983584$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gopalakrishnan, Deepak</creatorcontrib><creatorcontrib>Taraphdar, Sourav</creatorcontrib><creatorcontrib>Pauluis, Olivier M.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Ajayamohan, R. S.</creatorcontrib><creatorcontrib>Al Shamsi, Noor</creatorcontrib><creatorcontrib>Chen, Sisi</creatorcontrib><creatorcontrib>Lee, Jared A.</creatorcontrib><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Liu, Changhai</creatorcontrib><creatorcontrib>Tessendorf, Sarah A.</creatorcontrib><creatorcontrib>Rasmussen, Roy M.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Anatomy of a Summertime Convective Event over the Arabian Region</title><title>Monthly weather review</title><description>This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical Convective Model, version 2, (ACM2) scheme; and the quasi-normal scale-elimination (QNSE) scheme. Convection initiates near the Al Hajar Mountains of northern Oman at around 1100 local time (LT; 0700 UTC) and propagates northwestward. A nonorographic convective band along the west coast of the United Arab Emirates (UAE) develops after 1500 LT as a result of the convergence of cold pools with the sea breeze from the Arabian Gulf. The model simulation employing the QNSE scheme simulates the convection initiation and propagation well. Although the MYNN and ACM2 simulations show convective initiation near the Al Hajar Mountains, they fail to simulate the development of the convective band along the UAE west coast. The MYNN run simulates colder near-surface temperatures and a weaker sea breeze, whereas the ACM2 run simulates a stronger sea breeze but a drier lower troposphere. Sensitivity simulations using horizontal grid spacings of 9 and 3 km show that lower-resolution runs develop broader convective structures and weaker cold pools and horizontal wind divergence, affecting the development of convection along the west coast of the UAE. The 1-km run using the QNSE PBL scheme realistically captures the sequence of events that leads to the moist convection over the UAE and adjacent mountains.</description><subject>Aerosols</subject><subject>Airports</subject><subject>Cloud seeding</subject><subject>Cloud-resolving models</subject><subject>Cold pools</subject><subject>Convection</subject><subject>Convective event</subject><subject>Convective initiation</subject><subject>Deep convection</subject><subject>Divergence</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Heat</subject><subject>Isentropic analysis</subject><subject>Lower troposphere</subject><subject>Moist convection</subject><subject>Mountains</subject><subject>Orographic effects</subject><subject>Pbl parameterization</subject><subject>Pools</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Sea breezes</subject><subject>Simulation</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Troposphere</subject><subject>Universal time</subject><subject>WRF model</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEYRYMoWKtrt0HXab-8ZtKdpa0PqAhVcRnSTGKnOEnNpAP9906pq7s5XA4HoVsKI0pLOX79WpE5YYwAKDaiZ2hAJQMCYsLP0QCAlQQKIS7RVdtuAaAoBBugh2kwOTYHHD02-H3fNC7lunF4FkPnbK47hxedCxnHziWcNw5Pk1nXJuCV-65juEYX3vy07uZ_h-jzcfExeybLt6eX2XRJLOdlJp4LxUtZSaPURFphlCy8YZJX0nNTMEdZoSoKHhgIb6UQa6WYWgtVimpiDB-iu9NvbHOtW1tnZzc2htBLajpRXCrRQ_cnaJfi7961WW_jPoXeSzMFJXAGHHpqfKJsim2bnNe7VDcmHTQFfWyp-5Z6rhnTx5aa8j8SE2Sk</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Gopalakrishnan, Deepak</creator><creator>Taraphdar, Sourav</creator><creator>Pauluis, Olivier M.</creator><creator>Xue, Lulin</creator><creator>Ajayamohan, R. S.</creator><creator>Al Shamsi, Noor</creator><creator>Chen, Sisi</creator><creator>Lee, Jared A.</creator><creator>Grabowski, Wojciech W.</creator><creator>Liu, Changhai</creator><creator>Tessendorf, Sarah A.</creator><creator>Rasmussen, Roy M.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3276-625X</orcidid><orcidid>https://orcid.org/000000023276625X</orcidid></search><sort><creationdate>202304</creationdate><title>Anatomy of a Summertime Convective Event over the Arabian Region</title><author>Gopalakrishnan, Deepak ; Taraphdar, Sourav ; Pauluis, Olivier M. ; Xue, Lulin ; Ajayamohan, R. S. ; Al Shamsi, Noor ; Chen, Sisi ; Lee, Jared A. ; Grabowski, Wojciech W. ; Liu, Changhai ; Tessendorf, Sarah A. ; Rasmussen, Roy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f348375d5a8895c4a856fa253d5f3a62e1268d10f0204fc544b8828b4874d9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Airports</topic><topic>Cloud seeding</topic><topic>Cloud-resolving models</topic><topic>Cold pools</topic><topic>Convection</topic><topic>Convective event</topic><topic>Convective initiation</topic><topic>Deep convection</topic><topic>Divergence</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Heat</topic><topic>Isentropic analysis</topic><topic>Lower troposphere</topic><topic>Moist convection</topic><topic>Mountains</topic><topic>Orographic effects</topic><topic>Pbl parameterization</topic><topic>Pools</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Sea breezes</topic><topic>Simulation</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Troposphere</topic><topic>Universal time</topic><topic>WRF model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, Deepak</creatorcontrib><creatorcontrib>Taraphdar, Sourav</creatorcontrib><creatorcontrib>Pauluis, Olivier M.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Ajayamohan, R. S.</creatorcontrib><creatorcontrib>Al Shamsi, Noor</creatorcontrib><creatorcontrib>Chen, Sisi</creatorcontrib><creatorcontrib>Lee, Jared A.</creatorcontrib><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Liu, Changhai</creatorcontrib><creatorcontrib>Tessendorf, Sarah A.</creatorcontrib><creatorcontrib>Rasmussen, Roy M.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishnan, Deepak</au><au>Taraphdar, Sourav</au><au>Pauluis, Olivier M.</au><au>Xue, Lulin</au><au>Ajayamohan, R. S.</au><au>Al Shamsi, Noor</au><au>Chen, Sisi</au><au>Lee, Jared A.</au><au>Grabowski, Wojciech W.</au><au>Liu, Changhai</au><au>Tessendorf, Sarah A.</au><au>Rasmussen, Roy M.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy of a Summertime Convective Event over the Arabian Region</atitle><jtitle>Monthly weather review</jtitle><date>2023-04</date><risdate>2023</risdate><volume>151</volume><issue>4</issue><spage>989</spage><epage>1004</epage><pages>989-1004</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical Convective Model, version 2, (ACM2) scheme; and the quasi-normal scale-elimination (QNSE) scheme. Convection initiates near the Al Hajar Mountains of northern Oman at around 1100 local time (LT; 0700 UTC) and propagates northwestward. A nonorographic convective band along the west coast of the United Arab Emirates (UAE) develops after 1500 LT as a result of the convergence of cold pools with the sea breeze from the Arabian Gulf. The model simulation employing the QNSE scheme simulates the convection initiation and propagation well. Although the MYNN and ACM2 simulations show convective initiation near the Al Hajar Mountains, they fail to simulate the development of the convective band along the UAE west coast. The MYNN run simulates colder near-surface temperatures and a weaker sea breeze, whereas the ACM2 run simulates a stronger sea breeze but a drier lower troposphere. Sensitivity simulations using horizontal grid spacings of 9 and 3 km show that lower-resolution runs develop broader convective structures and weaker cold pools and horizontal wind divergence, affecting the development of convection along the west coast of the UAE. The 1-km run using the QNSE PBL scheme realistically captures the sequence of events that leads to the moist convection over the UAE and adjacent mountains.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-22-0082.1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3276-625X</orcidid><orcidid>https://orcid.org/000000023276625X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2023-04, Vol.151 (4), p.989-1004
issn 0027-0644
1520-0493
language eng
recordid cdi_osti_scitechconnect_1983584
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Aerosols
Airports
Cloud seeding
Cloud-resolving models
Cold pools
Convection
Convective event
Convective initiation
Deep convection
Divergence
ENVIRONMENTAL SCIENCES
Heat
Isentropic analysis
Lower troposphere
Moist convection
Mountains
Orographic effects
Pbl parameterization
Pools
Precipitation
Rain
Sea breezes
Simulation
Summer
Surface temperature
Troposphere
Universal time
WRF model
title Anatomy of a Summertime Convective Event over the Arabian Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy%20of%20a%20Summertime%20Convective%20Event%20over%20the%20Arabian%20Region&rft.jtitle=Monthly%20weather%20review&rft.au=Gopalakrishnan,%20Deepak&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-04&rft.volume=151&rft.issue=4&rft.spage=989&rft.epage=1004&rft.pages=989-1004&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-22-0082.1&rft_dat=%3Cproquest_osti_%3E2807032030%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807032030&rft_id=info:pmid/&rfr_iscdi=true