Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice

Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-06, Vol.35 (23), p.e2208367-n/a
Hauptverfasser: Behera, Piush, Parsonnet, Eric, Gómez‐Ortiz, Fernando, Srikrishna, Vishantak, Meisenheimer, Peter, Susarla, Sandhya, Kavle, Pravin, Caretta, Lucas, Wu, Yongjun, Tian, Zishen, Fernandez, Abel, Martin, Lane W., Das, Sujit, Junquera, Javier, Hong, Zijian, Ramesh, Ramamoorthy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2208367
container_title Advanced materials (Weinheim)
container_volume 35
creator Behera, Piush
Parsonnet, Eric
Gómez‐Ortiz, Fernando
Srikrishna, Vishantak
Meisenheimer, Peter
Susarla, Sandhya
Kavle, Pravin
Caretta, Lucas
Wu, Yongjun
Tian, Zishen
Fernandez, Abel
Martin, Lane W.
Das, Sujit
Junquera, Javier
Hong, Zijian
Ramesh, Ramamoorthy
description Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor‐based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric–ferroelectric–dielectric trilayers exhibit classical ferroelectric bi‐stability together with the existence of low‐field metastable polarization states. This behavior is directly tied to the in‐plane vortex ordering, and it is shown that it can be used as a new method of non‐destructive readout‐out of the poled state. Within the polar vortex lattice, low‐field metastable switching events are demonstrated in coexistence with classical ferroelectric bi‐stability. By changing the poled state of the vortex lattice one can tune the anisotropy of these low‐field hysteresis loops, allowing for a novel method of non‐destructive readout of the poled state with a simple in‐plane capacitor.
doi_str_mv 10.1002/adma.202208367
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1983515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823397310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4407-6744ec2a97d59894ed4578b55a05da22962089f046589afacaef31f300a91e9b3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSuHJEEVy4ZBl_JZnjsrSAtAgkPq6W15l0XSVxa3sp_fd4taVIXDjZh8evxvMy9pzDkgOIN7af7FKAENDJpn3AFlwLXitA_ZAtAKWusVHdCXuS0iUAYAPNY3YiG5TlLhZsfTZRvKA5V-cUY6CRXI7eVV9vfHY7P19Ub2lnf_oQqyGGqfoSRhurHyFm-lVtbM7e0VP2aLBjomd35yn7fn72bf2h3nx-_3G92tROKWjrplWKnLDY9ho7VNQr3XZbrS3o3gpR5oEOB1CN7tAO1lkaJB8kgEVOuJWn7OUxN6TsTXI-k9u5MM9lZsOxk5rrgl4f0VUM13tK2Uw-ORpHO1PYJyM6aBClUgf66h96GfZxLl8oSkiJreRQ1PKoXAwpRRrMVfSTjbeGgzl0YA4dmPsOyoMXd7H77UT9Pf-z9ALwCG78SLf_iTOrd59Wf8N_A53XkLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823397310</pqid></control><display><type>article</type><title>Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice</title><source>Wiley Journals</source><creator>Behera, Piush ; Parsonnet, Eric ; Gómez‐Ortiz, Fernando ; Srikrishna, Vishantak ; Meisenheimer, Peter ; Susarla, Sandhya ; Kavle, Pravin ; Caretta, Lucas ; Wu, Yongjun ; Tian, Zishen ; Fernandez, Abel ; Martin, Lane W. ; Das, Sujit ; Junquera, Javier ; Hong, Zijian ; Ramesh, Ramamoorthy</creator><creatorcontrib>Behera, Piush ; Parsonnet, Eric ; Gómez‐Ortiz, Fernando ; Srikrishna, Vishantak ; Meisenheimer, Peter ; Susarla, Sandhya ; Kavle, Pravin ; Caretta, Lucas ; Wu, Yongjun ; Tian, Zishen ; Fernandez, Abel ; Martin, Lane W. ; Das, Sujit ; Junquera, Javier ; Hong, Zijian ; Ramesh, Ramamoorthy</creatorcontrib><description>Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor‐based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric–ferroelectric–dielectric trilayers exhibit classical ferroelectric bi‐stability together with the existence of low‐field metastable polarization states. This behavior is directly tied to the in‐plane vortex ordering, and it is shown that it can be used as a new method of non‐destructive readout‐out of the poled state. Within the polar vortex lattice, low‐field metastable switching events are demonstrated in coexistence with classical ferroelectric bi‐stability. By changing the poled state of the vortex lattice one can tune the anisotropy of these low‐field hysteresis loops, allowing for a novel method of non‐destructive readout of the poled state with a simple in‐plane capacitor.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202208367</identifier><identifier>PMID: 36930962</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ferroelectric materials ; Ferroelectricity ; ferroelectric thin films ; Hypothetical particles ; Materials science ; Memory devices ; Particle theory ; Playgrounds ; Polar vortex ; topology ; vortex states</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (23), p.e2208367-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4407-6744ec2a97d59894ed4578b55a05da22962089f046589afacaef31f300a91e9b3</citedby><cites>FETCH-LOGICAL-c4407-6744ec2a97d59894ed4578b55a05da22962089f046589afacaef31f300a91e9b3</cites><orcidid>0000-0003-0524-1332 ; 0000-0002-7550-0208 ; 0000000275500208 ; 0000000305241332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202208367$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202208367$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36930962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1983515$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Behera, Piush</creatorcontrib><creatorcontrib>Parsonnet, Eric</creatorcontrib><creatorcontrib>Gómez‐Ortiz, Fernando</creatorcontrib><creatorcontrib>Srikrishna, Vishantak</creatorcontrib><creatorcontrib>Meisenheimer, Peter</creatorcontrib><creatorcontrib>Susarla, Sandhya</creatorcontrib><creatorcontrib>Kavle, Pravin</creatorcontrib><creatorcontrib>Caretta, Lucas</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Tian, Zishen</creatorcontrib><creatorcontrib>Fernandez, Abel</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Das, Sujit</creatorcontrib><creatorcontrib>Junquera, Javier</creatorcontrib><creatorcontrib>Hong, Zijian</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><title>Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor‐based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric–ferroelectric–dielectric trilayers exhibit classical ferroelectric bi‐stability together with the existence of low‐field metastable polarization states. This behavior is directly tied to the in‐plane vortex ordering, and it is shown that it can be used as a new method of non‐destructive readout‐out of the poled state. Within the polar vortex lattice, low‐field metastable switching events are demonstrated in coexistence with classical ferroelectric bi‐stability. By changing the poled state of the vortex lattice one can tune the anisotropy of these low‐field hysteresis loops, allowing for a novel method of non‐destructive readout of the poled state with a simple in‐plane capacitor.</description><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectric thin films</subject><subject>Hypothetical particles</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>Particle theory</subject><subject>Playgrounds</subject><subject>Polar vortex</subject><subject>topology</subject><subject>vortex states</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALgehSuHJEEVy4ZBl_JZnjsrSAtAgkPq6W15l0XSVxa3sp_fd4taVIXDjZh8evxvMy9pzDkgOIN7af7FKAENDJpn3AFlwLXitA_ZAtAKWusVHdCXuS0iUAYAPNY3YiG5TlLhZsfTZRvKA5V-cUY6CRXI7eVV9vfHY7P19Ub2lnf_oQqyGGqfoSRhurHyFm-lVtbM7e0VP2aLBjomd35yn7fn72bf2h3nx-_3G92tROKWjrplWKnLDY9ho7VNQr3XZbrS3o3gpR5oEOB1CN7tAO1lkaJB8kgEVOuJWn7OUxN6TsTXI-k9u5MM9lZsOxk5rrgl4f0VUM13tK2Uw-ORpHO1PYJyM6aBClUgf66h96GfZxLl8oSkiJreRQ1PKoXAwpRRrMVfSTjbeGgzl0YA4dmPsOyoMXd7H77UT9Pf-z9ALwCG78SLf_iTOrd59Wf8N_A53XkLA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Behera, Piush</creator><creator>Parsonnet, Eric</creator><creator>Gómez‐Ortiz, Fernando</creator><creator>Srikrishna, Vishantak</creator><creator>Meisenheimer, Peter</creator><creator>Susarla, Sandhya</creator><creator>Kavle, Pravin</creator><creator>Caretta, Lucas</creator><creator>Wu, Yongjun</creator><creator>Tian, Zishen</creator><creator>Fernandez, Abel</creator><creator>Martin, Lane W.</creator><creator>Das, Sujit</creator><creator>Junquera, Javier</creator><creator>Hong, Zijian</creator><creator>Ramesh, Ramamoorthy</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0524-1332</orcidid><orcidid>https://orcid.org/0000-0002-7550-0208</orcidid><orcidid>https://orcid.org/0000000275500208</orcidid><orcidid>https://orcid.org/0000000305241332</orcidid></search><sort><creationdate>20230601</creationdate><title>Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice</title><author>Behera, Piush ; Parsonnet, Eric ; Gómez‐Ortiz, Fernando ; Srikrishna, Vishantak ; Meisenheimer, Peter ; Susarla, Sandhya ; Kavle, Pravin ; Caretta, Lucas ; Wu, Yongjun ; Tian, Zishen ; Fernandez, Abel ; Martin, Lane W. ; Das, Sujit ; Junquera, Javier ; Hong, Zijian ; Ramesh, Ramamoorthy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4407-6744ec2a97d59894ed4578b55a05da22962089f046589afacaef31f300a91e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectric thin films</topic><topic>Hypothetical particles</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>Particle theory</topic><topic>Playgrounds</topic><topic>Polar vortex</topic><topic>topology</topic><topic>vortex states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behera, Piush</creatorcontrib><creatorcontrib>Parsonnet, Eric</creatorcontrib><creatorcontrib>Gómez‐Ortiz, Fernando</creatorcontrib><creatorcontrib>Srikrishna, Vishantak</creatorcontrib><creatorcontrib>Meisenheimer, Peter</creatorcontrib><creatorcontrib>Susarla, Sandhya</creatorcontrib><creatorcontrib>Kavle, Pravin</creatorcontrib><creatorcontrib>Caretta, Lucas</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Tian, Zishen</creatorcontrib><creatorcontrib>Fernandez, Abel</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Das, Sujit</creatorcontrib><creatorcontrib>Junquera, Javier</creatorcontrib><creatorcontrib>Hong, Zijian</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behera, Piush</au><au>Parsonnet, Eric</au><au>Gómez‐Ortiz, Fernando</au><au>Srikrishna, Vishantak</au><au>Meisenheimer, Peter</au><au>Susarla, Sandhya</au><au>Kavle, Pravin</au><au>Caretta, Lucas</au><au>Wu, Yongjun</au><au>Tian, Zishen</au><au>Fernandez, Abel</au><au>Martin, Lane W.</au><au>Das, Sujit</au><au>Junquera, Javier</au><au>Hong, Zijian</au><au>Ramesh, Ramamoorthy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>23</issue><spage>e2208367</spage><epage>n/a</epage><pages>e2208367-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor‐based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric–ferroelectric–dielectric trilayers exhibit classical ferroelectric bi‐stability together with the existence of low‐field metastable polarization states. This behavior is directly tied to the in‐plane vortex ordering, and it is shown that it can be used as a new method of non‐destructive readout‐out of the poled state. Within the polar vortex lattice, low‐field metastable switching events are demonstrated in coexistence with classical ferroelectric bi‐stability. By changing the poled state of the vortex lattice one can tune the anisotropy of these low‐field hysteresis loops, allowing for a novel method of non‐destructive readout of the poled state with a simple in‐plane capacitor.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36930962</pmid><doi>10.1002/adma.202208367</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0524-1332</orcidid><orcidid>https://orcid.org/0000-0002-7550-0208</orcidid><orcidid>https://orcid.org/0000000275500208</orcidid><orcidid>https://orcid.org/0000000305241332</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-06, Vol.35 (23), p.e2208367-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1983515
source Wiley Journals
subjects Ferroelectric materials
Ferroelectricity
ferroelectric thin films
Hypothetical particles
Materials science
Memory devices
Particle theory
Playgrounds
Polar vortex
topology
vortex states
title Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergent%20Ferroelectric%20Switching%20Behavior%20from%20Polar%20Vortex%20Lattice&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Behera,%20Piush&rft.date=2023-06-01&rft.volume=35&rft.issue=23&rft.spage=e2208367&rft.epage=n/a&rft.pages=e2208367-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202208367&rft_dat=%3Cproquest_osti_%3E2823397310%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823397310&rft_id=info:pmid/36930962&rfr_iscdi=true