A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response

Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell−environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-04, Vol.12 (10), p.e2201503-n/a
Hauptverfasser: Zanut, Alessandra, Li, Rui, Deng, Ru, Liu, Xiangyu, Rejhon, Martin, Chen, Weiqiang, Weck, Marcus, de Peppo, Giuseppe Maria, Riedo, Elisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2201503
container_title Advanced healthcare materials
container_volume 12
creator Zanut, Alessandra
Li, Rui
Deng, Ru
Liu, Xiangyu
Rejhon, Martin
Chen, Weiqiang
Weck, Marcus
de Peppo, Giuseppe Maria
Riedo, Elisa
description Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell−environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa−MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross‐linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next‐generation biosensors, single‐cell patterning, and lab‐on‐a‐chip devices. A novel platform to tune the stiffness of a biocompatible polymeric interface up to values characteristic of the bone tissue (GPa range)  using ultraviolet (UV) cross‐linking is reported. Since cell growth and differentiation are here controlled solely by the UV‐tunable stiffness of the polymer, this platform is ideal for the simple and rapid fabrication of stiffness patterns and gradients for various biomedical applications.
doi_str_mv 10.1002/adhm.202201503
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1983369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758115291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3953-36ca9678a1a2f5f70baa05f7d32493a4854e464ab74accb4b4938b42829e9a213</originalsourceid><addsrcrecordid>eNqFkcuP0zAQhy0EYlfLXjkiCy5cWvyKax9LeCzSViAeZ8txJkqqxC62w5L_HpcuReKCLzOa-fzJ1g-hp5SsKSHslW37ac0IY4RWhD9Al4xqtmKy0g_PvSAX6DqlPSlHVlQq-hhdcFmVnstLtN_iT2FcJoi4tv6HTfhuyD3OPeAveeg6Dynh0P0evA4e8M7mOPzEOZT93C7Y-hbXwecYRryDBN71y2THsoUJ1zCO-DOkQ_AJnqBHnR0TXN_XK_Tt3duv9c3q9uP7D_X2duW4rviKS2e13ChLLeuqbkMaa0mpLWdCcytUJUBIYZuNsM41oilT1QimmAZtGeVX6PnJG1IeTHJDBte74D24bKhWnEtdoJcn6BDD9xlSNtOQXHmu9RDmZNimUpRWTB99L_5B92GOvnzBMEWoUpILXqj1iXIxpBShM4c4TDYuhhJzTMsc0zLntMqFZ_fauZmgPeN_simAPgF3wwjLf3Rm--Zm91f-C3LennU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801886343</pqid></control><display><type>article</type><title>A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Zanut, Alessandra ; Li, Rui ; Deng, Ru ; Liu, Xiangyu ; Rejhon, Martin ; Chen, Weiqiang ; Weck, Marcus ; de Peppo, Giuseppe Maria ; Riedo, Elisa</creator><creatorcontrib>Zanut, Alessandra ; Li, Rui ; Deng, Ru ; Liu, Xiangyu ; Rejhon, Martin ; Chen, Weiqiang ; Weck, Marcus ; de Peppo, Giuseppe Maria ; Riedo, Elisa</creatorcontrib><description>Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell−environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa−MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross‐linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next‐generation biosensors, single‐cell patterning, and lab‐on‐a‐chip devices. A novel platform to tune the stiffness of a biocompatible polymeric interface up to values characteristic of the bone tissue (GPa range)  using ultraviolet (UV) cross‐linking is reported. Since cell growth and differentiation are here controlled solely by the UV‐tunable stiffness of the polymer, this platform is ideal for the simple and rapid fabrication of stiffness patterns and gradients for various biomedical applications.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202201503</identifier><identifier>PMID: 36565136</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; biomaterials ; biomimicry ; Biosensors ; Bone and Bones ; Bone Matrix ; bones ; Cell adhesion ; Cell Differentiation ; Combinatorial analysis ; Differentiation (biology) ; extracellular matrices ; Human tissues ; Humans ; induced mesenchymal stem cells ; Interfaces ; Lab-on-a-chip ; Light irradiation ; Mechanical properties ; Mesenchymal Stem Cells ; Osteogenesis ; Pattern formation ; Polymer films ; Polymers ; Stem cells ; Stiffness ; stiffnesses ; Synergistic effect ; Thin films ; Tuning ; Ultraviolet radiation</subject><ispartof>Advanced healthcare materials, 2023-04, Vol.12 (10), p.e2201503-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3953-36ca9678a1a2f5f70baa05f7d32493a4854e464ab74accb4b4938b42829e9a213</cites><orcidid>0000-0002-2423-8801 ; 0000-0002-3797-4971 ; 0000000237974971 ; 0000000224238801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202201503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202201503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36565136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1983369$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanut, Alessandra</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Deng, Ru</creatorcontrib><creatorcontrib>Liu, Xiangyu</creatorcontrib><creatorcontrib>Rejhon, Martin</creatorcontrib><creatorcontrib>Chen, Weiqiang</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>de Peppo, Giuseppe Maria</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><title>A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell−environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa−MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross‐linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next‐generation biosensors, single‐cell patterning, and lab‐on‐a‐chip devices. A novel platform to tune the stiffness of a biocompatible polymeric interface up to values characteristic of the bone tissue (GPa range)  using ultraviolet (UV) cross‐linking is reported. Since cell growth and differentiation are here controlled solely by the UV‐tunable stiffness of the polymer, this platform is ideal for the simple and rapid fabrication of stiffness patterns and gradients for various biomedical applications.</description><subject>Biocompatibility</subject><subject>biomaterials</subject><subject>biomimicry</subject><subject>Biosensors</subject><subject>Bone and Bones</subject><subject>Bone Matrix</subject><subject>bones</subject><subject>Cell adhesion</subject><subject>Cell Differentiation</subject><subject>Combinatorial analysis</subject><subject>Differentiation (biology)</subject><subject>extracellular matrices</subject><subject>Human tissues</subject><subject>Humans</subject><subject>induced mesenchymal stem cells</subject><subject>Interfaces</subject><subject>Lab-on-a-chip</subject><subject>Light irradiation</subject><subject>Mechanical properties</subject><subject>Mesenchymal Stem Cells</subject><subject>Osteogenesis</subject><subject>Pattern formation</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>stiffnesses</subject><subject>Synergistic effect</subject><subject>Thin films</subject><subject>Tuning</subject><subject>Ultraviolet radiation</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuP0zAQhy0EYlfLXjkiCy5cWvyKax9LeCzSViAeZ8txJkqqxC62w5L_HpcuReKCLzOa-fzJ1g-hp5SsKSHslW37ac0IY4RWhD9Al4xqtmKy0g_PvSAX6DqlPSlHVlQq-hhdcFmVnstLtN_iT2FcJoi4tv6HTfhuyD3OPeAveeg6Dynh0P0evA4e8M7mOPzEOZT93C7Y-hbXwecYRryDBN71y2THsoUJ1zCO-DOkQ_AJnqBHnR0TXN_XK_Tt3duv9c3q9uP7D_X2duW4rviKS2e13ChLLeuqbkMaa0mpLWdCcytUJUBIYZuNsM41oilT1QimmAZtGeVX6PnJG1IeTHJDBte74D24bKhWnEtdoJcn6BDD9xlSNtOQXHmu9RDmZNimUpRWTB99L_5B92GOvnzBMEWoUpILXqj1iXIxpBShM4c4TDYuhhJzTMsc0zLntMqFZ_fauZmgPeN_simAPgF3wwjLf3Rm--Zm91f-C3LennU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zanut, Alessandra</creator><creator>Li, Rui</creator><creator>Deng, Ru</creator><creator>Liu, Xiangyu</creator><creator>Rejhon, Martin</creator><creator>Chen, Weiqiang</creator><creator>Weck, Marcus</creator><creator>de Peppo, Giuseppe Maria</creator><creator>Riedo, Elisa</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2423-8801</orcidid><orcidid>https://orcid.org/0000-0002-3797-4971</orcidid><orcidid>https://orcid.org/0000000237974971</orcidid><orcidid>https://orcid.org/0000000224238801</orcidid></search><sort><creationdate>20230401</creationdate><title>A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response</title><author>Zanut, Alessandra ; Li, Rui ; Deng, Ru ; Liu, Xiangyu ; Rejhon, Martin ; Chen, Weiqiang ; Weck, Marcus ; de Peppo, Giuseppe Maria ; Riedo, Elisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3953-36ca9678a1a2f5f70baa05f7d32493a4854e464ab74accb4b4938b42829e9a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>biomaterials</topic><topic>biomimicry</topic><topic>Biosensors</topic><topic>Bone and Bones</topic><topic>Bone Matrix</topic><topic>bones</topic><topic>Cell adhesion</topic><topic>Cell Differentiation</topic><topic>Combinatorial analysis</topic><topic>Differentiation (biology)</topic><topic>extracellular matrices</topic><topic>Human tissues</topic><topic>Humans</topic><topic>induced mesenchymal stem cells</topic><topic>Interfaces</topic><topic>Lab-on-a-chip</topic><topic>Light irradiation</topic><topic>Mechanical properties</topic><topic>Mesenchymal Stem Cells</topic><topic>Osteogenesis</topic><topic>Pattern formation</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>stiffnesses</topic><topic>Synergistic effect</topic><topic>Thin films</topic><topic>Tuning</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanut, Alessandra</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Deng, Ru</creatorcontrib><creatorcontrib>Liu, Xiangyu</creatorcontrib><creatorcontrib>Rejhon, Martin</creatorcontrib><creatorcontrib>Chen, Weiqiang</creatorcontrib><creatorcontrib>Weck, Marcus</creatorcontrib><creatorcontrib>de Peppo, Giuseppe Maria</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanut, Alessandra</au><au>Li, Rui</au><au>Deng, Ru</au><au>Liu, Xiangyu</au><au>Rejhon, Martin</au><au>Chen, Weiqiang</au><au>Weck, Marcus</au><au>de Peppo, Giuseppe Maria</au><au>Riedo, Elisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>12</volume><issue>10</issue><spage>e2201503</spage><epage>n/a</epage><pages>e2201503-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell−environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa−MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross‐linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next‐generation biosensors, single‐cell patterning, and lab‐on‐a‐chip devices. A novel platform to tune the stiffness of a biocompatible polymeric interface up to values characteristic of the bone tissue (GPa range)  using ultraviolet (UV) cross‐linking is reported. Since cell growth and differentiation are here controlled solely by the UV‐tunable stiffness of the polymer, this platform is ideal for the simple and rapid fabrication of stiffness patterns and gradients for various biomedical applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36565136</pmid><doi>10.1002/adhm.202201503</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2423-8801</orcidid><orcidid>https://orcid.org/0000-0002-3797-4971</orcidid><orcidid>https://orcid.org/0000000237974971</orcidid><orcidid>https://orcid.org/0000000224238801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-04, Vol.12 (10), p.e2201503-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_osti_scitechconnect_1983369
source MEDLINE; Wiley Online Library
subjects Biocompatibility
biomaterials
biomimicry
Biosensors
Bone and Bones
Bone Matrix
bones
Cell adhesion
Cell Differentiation
Combinatorial analysis
Differentiation (biology)
extracellular matrices
Human tissues
Humans
induced mesenchymal stem cells
Interfaces
Lab-on-a-chip
Light irradiation
Mechanical properties
Mesenchymal Stem Cells
Osteogenesis
Pattern formation
Polymer films
Polymers
Stem cells
Stiffness
stiffnesses
Synergistic effect
Thin films
Tuning
Ultraviolet radiation
title A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polymer%20Canvas%20with%20the%20Stiffness%20of%20the%20Bone%20Matrix%20to%20Study%20and%20Control%20Mesenchymal%20Stem%20Cell%20Response&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zanut,%20Alessandra&rft.date=2023-04-01&rft.volume=12&rft.issue=10&rft.spage=e2201503&rft.epage=n/a&rft.pages=e2201503-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202201503&rft_dat=%3Cproquest_osti_%3E2758115291%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801886343&rft_id=info:pmid/36565136&rfr_iscdi=true