On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy
We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution ( Δ S method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-10, Vol.919 (2), p.118 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 118 |
container_title | The Astrophysical journal |
container_volume | 919 |
creator | Fabrizio, M. Braga, V. F. Crestani, J. Bono, G. Ferraro, I. Fiorentino, G. Iannicola, G. Preston, G. W. Sneden, C. Thévenin, F. Altavilla, G. Chaboyer, B. Dall’Ora, M. da Silva, R. Grebel, E. K. Gilligan, C. K. Lala, H. Lemasle, B. Magurno, D. Marengo, M. Marinoni, S. Marrese, P. M. Martínez-Vázquez, C. E. Matsunaga, N. Monelli, M. Mullen, J. P. Neeley, J. Nonino, M. Prudil, Z. Salaris, M Stetson, P. B. Valenti, E. Zoccali, M. |
description | We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution (
Δ
S method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs were supplemented with similar estimates that are available in the literature, ending up with 9015 RRLs (6150 RRab, 2865 RRc). The metallicity distribution shows a mean value of 〈[Fe/H]〉 = −1.51 ± 0.01, and
σ
(standard deviation) = 0.41 dex with a long metal-poor tail approaching [Fe/H] ≃ − 3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (〈[Fe/H]〉
ab
= −1.48 ± 0.01,
σ
= 0.41 dex) than RRc variables (〈[Fe/H]〉
c
= −1.58 ± 0.01,
σ
= 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude versus period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%, respectively. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (N
c
/N
tot
) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ∼0.25 to ∼0.36 in the metal-poor regime, it decreases from ∼0.36 to ∼0.18 for −1.8 ≤ [Fe/H] ≤ −0.9 and it increases to a value of ∼0.3 approaching solar iron abundance. |
doi_str_mv | 10.3847/1538-4357/ac1115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1983176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579134724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-f7ec4c78826545b69b4640939af74269d19ad5b8789c5893b769e150a944f7073</originalsourceid><addsrcrecordid>eNo9kd1LwzAUxYMoOKfvPgZ98qFb0iRN49tQ9wHDyXDiW0jT1HZ0zUwyZf-9LZU9nXsPPw73cgC4xWhEUsrHmJE0ooTxsdIYY3YGBifrHAwQQjRKCP-8BFfeb7s1FmIAtqsGhtLAjTfQFnBamTqH6zVcHp0ycOLhTNVKh0rDN2cz4x_h4mMEX80vXDS--iqDb4dgoWpyOHH20EoXt7I-GFfaooDPlS5tsLvjNbgoVO3Nzb8OwWb68v40j5ar2eJpsow04TREBTeaap6mccIoyxKR0YQiQYQqOI0TkWOhcpalPBWapYJkPBEGM6QEpQVHnAzBXZ_b3lBJr6tgdKlt0xgdJBYpwTxpoYceKlUt967aKXeUVlVyPlnKzkOEcBYT9INb9r5n985-H4wPcmsPrml_kDHjAhPKY9pSqKe0s947U5xiMZJdRbLrQ3Z9yL4i8gdarH-t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579134724</pqid></control><display><type>article</type><title>On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fabrizio, M. ; Braga, V. F. ; Crestani, J. ; Bono, G. ; Ferraro, I. ; Fiorentino, G. ; Iannicola, G. ; Preston, G. W. ; Sneden, C. ; Thévenin, F. ; Altavilla, G. ; Chaboyer, B. ; Dall’Ora, M. ; da Silva, R. ; Grebel, E. K. ; Gilligan, C. K. ; Lala, H. ; Lemasle, B. ; Magurno, D. ; Marengo, M. ; Marinoni, S. ; Marrese, P. M. ; Martínez-Vázquez, C. E. ; Matsunaga, N. ; Monelli, M. ; Mullen, J. P. ; Neeley, J. ; Nonino, M. ; Prudil, Z. ; Salaris, M ; Stetson, P. B. ; Valenti, E. ; Zoccali, M.</creator><creatorcontrib>Fabrizio, M. ; Braga, V. F. ; Crestani, J. ; Bono, G. ; Ferraro, I. ; Fiorentino, G. ; Iannicola, G. ; Preston, G. W. ; Sneden, C. ; Thévenin, F. ; Altavilla, G. ; Chaboyer, B. ; Dall’Ora, M. ; da Silva, R. ; Grebel, E. K. ; Gilligan, C. K. ; Lala, H. ; Lemasle, B. ; Magurno, D. ; Marengo, M. ; Marinoni, S. ; Marrese, P. M. ; Martínez-Vázquez, C. E. ; Matsunaga, N. ; Monelli, M. ; Mullen, J. P. ; Neeley, J. ; Nonino, M. ; Prudil, Z. ; Salaris, M ; Stetson, P. B. ; Valenti, E. ; Zoccali, M. ; US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Sloan Digital Sky Survey (SDSS)</creatorcontrib><description>We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution (
Δ
S method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs were supplemented with similar estimates that are available in the literature, ending up with 9015 RRLs (6150 RRab, 2865 RRc). The metallicity distribution shows a mean value of 〈[Fe/H]〉 = −1.51 ± 0.01, and
σ
(standard deviation) = 0.41 dex with a long metal-poor tail approaching [Fe/H] ≃ − 3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (〈[Fe/H]〉
ab
= −1.48 ± 0.01,
σ
= 0.41 dex) than RRc variables (〈[Fe/H]〉
c
= −1.58 ± 0.01,
σ
= 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude versus period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%, respectively. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (N
c
/N
tot
) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ∼0.25 to ∼0.36 in the metal-poor regime, it decreases from ∼0.36 to ∼0.18 for −1.8 ≤ [Fe/H] ≤ −0.9 and it increases to a value of ∼0.3 approaching solar iron abundance.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac1115</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Abundance ; Amplitudes ; Astronomy & Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Globular clusters ; Iron ; Metallicity ; Metals ; Milky Way stellar halo ; Physics ; RR Lyrae variable stars ; Spectroscopy</subject><ispartof>The Astrophysical journal, 2021-10, Vol.919 (2), p.118</ispartof><rights>Copyright IOP Publishing Oct 01, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-f7ec4c78826545b69b4640939af74269d19ad5b8789c5893b769e150a944f7073</citedby><cites>FETCH-LOGICAL-c374t-f7ec4c78826545b69b4640939af74269d19ad5b8789c5893b769e150a944f7073</cites><orcidid>0000-0002-2744-1928 ; 0000-0002-1891-3794 ; 0000-0001-5479-5062 ; 0000-0001-8926-3496 ; 0000-0001-8514-7957 ; 0000-0002-9144-7726 ; 0000-0002-5829-2267 ; 0000-0001-9910-9230 ; 0000-0003-0376-6928 ; 0000-0003-3096-4161 ; 0000-0002-3456-5929 ; 0000-0002-8894-836X ; 0000-0001-5497-5805 ; 0000-0001-6342-9662 ; 0000-0002-6092-7145 ; 0000-0002-5032-2476 ; 0000-0001-5292-6380 ; 0000-0001-8209-0449 ; 0000-0001-6074-6830 ; 0000-0001-5829-111X ; 0000-0001-7511-2830 ; 0000-0001-9816-5484 ; 0000-0002-4896-8841 ; 0000-0002-9934-1352 ; 0000-0001-7990-6849 ; 0000-0002-8162-3810 ; 0000-0002-1650-2764 ; 0000000185147957 ; 0000000160746830 ; 0000000199109230 ; 0000000227441928 ; 0000000248968841 ; 0000000198165484 ; 0000000154795062 ; 0000000175112830 ; 0000000179906849 ; 0000000154975805 ; 0000000218913794 ; 0000000303766928 ; 0000000234565929 ; 0000000258292267 ; 0000000216502764 ; 0000000299341352 ; 0000000152926380 ; 0000000250322476 ; 0000000291447726 ; 0000000281623810 ; 0000000163429662 ; 0000000260927145 ; 0000000330964161 ; 0000000182090449 ; 000000015829111X ; 000000028894836X ; 0000000189263496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03375230$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1983176$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fabrizio, M.</creatorcontrib><creatorcontrib>Braga, V. F.</creatorcontrib><creatorcontrib>Crestani, J.</creatorcontrib><creatorcontrib>Bono, G.</creatorcontrib><creatorcontrib>Ferraro, I.</creatorcontrib><creatorcontrib>Fiorentino, G.</creatorcontrib><creatorcontrib>Iannicola, G.</creatorcontrib><creatorcontrib>Preston, G. W.</creatorcontrib><creatorcontrib>Sneden, C.</creatorcontrib><creatorcontrib>Thévenin, F.</creatorcontrib><creatorcontrib>Altavilla, G.</creatorcontrib><creatorcontrib>Chaboyer, B.</creatorcontrib><creatorcontrib>Dall’Ora, M.</creatorcontrib><creatorcontrib>da Silva, R.</creatorcontrib><creatorcontrib>Grebel, E. K.</creatorcontrib><creatorcontrib>Gilligan, C. K.</creatorcontrib><creatorcontrib>Lala, H.</creatorcontrib><creatorcontrib>Lemasle, B.</creatorcontrib><creatorcontrib>Magurno, D.</creatorcontrib><creatorcontrib>Marengo, M.</creatorcontrib><creatorcontrib>Marinoni, S.</creatorcontrib><creatorcontrib>Marrese, P. M.</creatorcontrib><creatorcontrib>Martínez-Vázquez, C. E.</creatorcontrib><creatorcontrib>Matsunaga, N.</creatorcontrib><creatorcontrib>Monelli, M.</creatorcontrib><creatorcontrib>Mullen, J. P.</creatorcontrib><creatorcontrib>Neeley, J.</creatorcontrib><creatorcontrib>Nonino, M.</creatorcontrib><creatorcontrib>Prudil, Z.</creatorcontrib><creatorcontrib>Salaris, M</creatorcontrib><creatorcontrib>Stetson, P. B.</creatorcontrib><creatorcontrib>Valenti, E.</creatorcontrib><creatorcontrib>Zoccali, M.</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Sloan Digital Sky Survey (SDSS)</creatorcontrib><title>On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy</title><title>The Astrophysical journal</title><description>We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution (
Δ
S method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs were supplemented with similar estimates that are available in the literature, ending up with 9015 RRLs (6150 RRab, 2865 RRc). The metallicity distribution shows a mean value of 〈[Fe/H]〉 = −1.51 ± 0.01, and
σ
(standard deviation) = 0.41 dex with a long metal-poor tail approaching [Fe/H] ≃ − 3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (〈[Fe/H]〉
ab
= −1.48 ± 0.01,
σ
= 0.41 dex) than RRc variables (〈[Fe/H]〉
c
= −1.58 ± 0.01,
σ
= 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude versus period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%, respectively. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (N
c
/N
tot
) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ∼0.25 to ∼0.36 in the metal-poor regime, it decreases from ∼0.36 to ∼0.18 for −1.8 ≤ [Fe/H] ≤ −0.9 and it increases to a value of ∼0.3 approaching solar iron abundance.</description><subject>Abundance</subject><subject>Amplitudes</subject><subject>Astronomy & Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Globular clusters</subject><subject>Iron</subject><subject>Metallicity</subject><subject>Metals</subject><subject>Milky Way stellar halo</subject><subject>Physics</subject><subject>RR Lyrae variable stars</subject><subject>Spectroscopy</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kd1LwzAUxYMoOKfvPgZ98qFb0iRN49tQ9wHDyXDiW0jT1HZ0zUwyZf-9LZU9nXsPPw73cgC4xWhEUsrHmJE0ooTxsdIYY3YGBifrHAwQQjRKCP-8BFfeb7s1FmIAtqsGhtLAjTfQFnBamTqH6zVcHp0ycOLhTNVKh0rDN2cz4x_h4mMEX80vXDS--iqDb4dgoWpyOHH20EoXt7I-GFfaooDPlS5tsLvjNbgoVO3Nzb8OwWb68v40j5ar2eJpsow04TREBTeaap6mccIoyxKR0YQiQYQqOI0TkWOhcpalPBWapYJkPBEGM6QEpQVHnAzBXZ_b3lBJr6tgdKlt0xgdJBYpwTxpoYceKlUt967aKXeUVlVyPlnKzkOEcBYT9INb9r5n985-H4wPcmsPrml_kDHjAhPKY9pSqKe0s947U5xiMZJdRbLrQ3Z9yL4i8gdarH-t</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fabrizio, M.</creator><creator>Braga, V. F.</creator><creator>Crestani, J.</creator><creator>Bono, G.</creator><creator>Ferraro, I.</creator><creator>Fiorentino, G.</creator><creator>Iannicola, G.</creator><creator>Preston, G. W.</creator><creator>Sneden, C.</creator><creator>Thévenin, F.</creator><creator>Altavilla, G.</creator><creator>Chaboyer, B.</creator><creator>Dall’Ora, M.</creator><creator>da Silva, R.</creator><creator>Grebel, E. K.</creator><creator>Gilligan, C. K.</creator><creator>Lala, H.</creator><creator>Lemasle, B.</creator><creator>Magurno, D.</creator><creator>Marengo, M.</creator><creator>Marinoni, S.</creator><creator>Marrese, P. M.</creator><creator>Martínez-Vázquez, C. E.</creator><creator>Matsunaga, N.</creator><creator>Monelli, M.</creator><creator>Mullen, J. P.</creator><creator>Neeley, J.</creator><creator>Nonino, M.</creator><creator>Prudil, Z.</creator><creator>Salaris, M</creator><creator>Stetson, P. B.</creator><creator>Valenti, E.</creator><creator>Zoccali, M.</creator><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2744-1928</orcidid><orcidid>https://orcid.org/0000-0002-1891-3794</orcidid><orcidid>https://orcid.org/0000-0001-5479-5062</orcidid><orcidid>https://orcid.org/0000-0001-8926-3496</orcidid><orcidid>https://orcid.org/0000-0001-8514-7957</orcidid><orcidid>https://orcid.org/0000-0002-9144-7726</orcidid><orcidid>https://orcid.org/0000-0002-5829-2267</orcidid><orcidid>https://orcid.org/0000-0001-9910-9230</orcidid><orcidid>https://orcid.org/0000-0003-0376-6928</orcidid><orcidid>https://orcid.org/0000-0003-3096-4161</orcidid><orcidid>https://orcid.org/0000-0002-3456-5929</orcidid><orcidid>https://orcid.org/0000-0002-8894-836X</orcidid><orcidid>https://orcid.org/0000-0001-5497-5805</orcidid><orcidid>https://orcid.org/0000-0001-6342-9662</orcidid><orcidid>https://orcid.org/0000-0002-6092-7145</orcidid><orcidid>https://orcid.org/0000-0002-5032-2476</orcidid><orcidid>https://orcid.org/0000-0001-5292-6380</orcidid><orcidid>https://orcid.org/0000-0001-8209-0449</orcidid><orcidid>https://orcid.org/0000-0001-6074-6830</orcidid><orcidid>https://orcid.org/0000-0001-5829-111X</orcidid><orcidid>https://orcid.org/0000-0001-7511-2830</orcidid><orcidid>https://orcid.org/0000-0001-9816-5484</orcidid><orcidid>https://orcid.org/0000-0002-4896-8841</orcidid><orcidid>https://orcid.org/0000-0002-9934-1352</orcidid><orcidid>https://orcid.org/0000-0001-7990-6849</orcidid><orcidid>https://orcid.org/0000-0002-8162-3810</orcidid><orcidid>https://orcid.org/0000-0002-1650-2764</orcidid><orcidid>https://orcid.org/0000000185147957</orcidid><orcidid>https://orcid.org/0000000160746830</orcidid><orcidid>https://orcid.org/0000000199109230</orcidid><orcidid>https://orcid.org/0000000227441928</orcidid><orcidid>https://orcid.org/0000000248968841</orcidid><orcidid>https://orcid.org/0000000198165484</orcidid><orcidid>https://orcid.org/0000000154795062</orcidid><orcidid>https://orcid.org/0000000175112830</orcidid><orcidid>https://orcid.org/0000000179906849</orcidid><orcidid>https://orcid.org/0000000154975805</orcidid><orcidid>https://orcid.org/0000000218913794</orcidid><orcidid>https://orcid.org/0000000303766928</orcidid><orcidid>https://orcid.org/0000000234565929</orcidid><orcidid>https://orcid.org/0000000258292267</orcidid><orcidid>https://orcid.org/0000000216502764</orcidid><orcidid>https://orcid.org/0000000299341352</orcidid><orcidid>https://orcid.org/0000000152926380</orcidid><orcidid>https://orcid.org/0000000250322476</orcidid><orcidid>https://orcid.org/0000000291447726</orcidid><orcidid>https://orcid.org/0000000281623810</orcidid><orcidid>https://orcid.org/0000000163429662</orcidid><orcidid>https://orcid.org/0000000260927145</orcidid><orcidid>https://orcid.org/0000000330964161</orcidid><orcidid>https://orcid.org/0000000182090449</orcidid><orcidid>https://orcid.org/000000015829111X</orcidid><orcidid>https://orcid.org/000000028894836X</orcidid><orcidid>https://orcid.org/0000000189263496</orcidid></search><sort><creationdate>20211001</creationdate><title>On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy</title><author>Fabrizio, M. ; Braga, V. F. ; Crestani, J. ; Bono, G. ; Ferraro, I. ; Fiorentino, G. ; Iannicola, G. ; Preston, G. W. ; Sneden, C. ; Thévenin, F. ; Altavilla, G. ; Chaboyer, B. ; Dall’Ora, M. ; da Silva, R. ; Grebel, E. K. ; Gilligan, C. K. ; Lala, H. ; Lemasle, B. ; Magurno, D. ; Marengo, M. ; Marinoni, S. ; Marrese, P. M. ; Martínez-Vázquez, C. E. ; Matsunaga, N. ; Monelli, M. ; Mullen, J. P. ; Neeley, J. ; Nonino, M. ; Prudil, Z. ; Salaris, M ; Stetson, P. B. ; Valenti, E. ; Zoccali, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-f7ec4c78826545b69b4640939af74269d19ad5b8789c5893b769e150a944f7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Amplitudes</topic><topic>Astronomy & Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Globular clusters</topic><topic>Iron</topic><topic>Metallicity</topic><topic>Metals</topic><topic>Milky Way stellar halo</topic><topic>Physics</topic><topic>RR Lyrae variable stars</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabrizio, M.</creatorcontrib><creatorcontrib>Braga, V. F.</creatorcontrib><creatorcontrib>Crestani, J.</creatorcontrib><creatorcontrib>Bono, G.</creatorcontrib><creatorcontrib>Ferraro, I.</creatorcontrib><creatorcontrib>Fiorentino, G.</creatorcontrib><creatorcontrib>Iannicola, G.</creatorcontrib><creatorcontrib>Preston, G. W.</creatorcontrib><creatorcontrib>Sneden, C.</creatorcontrib><creatorcontrib>Thévenin, F.</creatorcontrib><creatorcontrib>Altavilla, G.</creatorcontrib><creatorcontrib>Chaboyer, B.</creatorcontrib><creatorcontrib>Dall’Ora, M.</creatorcontrib><creatorcontrib>da Silva, R.</creatorcontrib><creatorcontrib>Grebel, E. K.</creatorcontrib><creatorcontrib>Gilligan, C. K.</creatorcontrib><creatorcontrib>Lala, H.</creatorcontrib><creatorcontrib>Lemasle, B.</creatorcontrib><creatorcontrib>Magurno, D.</creatorcontrib><creatorcontrib>Marengo, M.</creatorcontrib><creatorcontrib>Marinoni, S.</creatorcontrib><creatorcontrib>Marrese, P. M.</creatorcontrib><creatorcontrib>Martínez-Vázquez, C. E.</creatorcontrib><creatorcontrib>Matsunaga, N.</creatorcontrib><creatorcontrib>Monelli, M.</creatorcontrib><creatorcontrib>Mullen, J. P.</creatorcontrib><creatorcontrib>Neeley, J.</creatorcontrib><creatorcontrib>Nonino, M.</creatorcontrib><creatorcontrib>Prudil, Z.</creatorcontrib><creatorcontrib>Salaris, M</creatorcontrib><creatorcontrib>Stetson, P. B.</creatorcontrib><creatorcontrib>Valenti, E.</creatorcontrib><creatorcontrib>Zoccali, M.</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Sloan Digital Sky Survey (SDSS)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabrizio, M.</au><au>Braga, V. F.</au><au>Crestani, J.</au><au>Bono, G.</au><au>Ferraro, I.</au><au>Fiorentino, G.</au><au>Iannicola, G.</au><au>Preston, G. W.</au><au>Sneden, C.</au><au>Thévenin, F.</au><au>Altavilla, G.</au><au>Chaboyer, B.</au><au>Dall’Ora, M.</au><au>da Silva, R.</au><au>Grebel, E. K.</au><au>Gilligan, C. K.</au><au>Lala, H.</au><au>Lemasle, B.</au><au>Magurno, D.</au><au>Marengo, M.</au><au>Marinoni, S.</au><au>Marrese, P. M.</au><au>Martínez-Vázquez, C. E.</au><au>Matsunaga, N.</au><au>Monelli, M.</au><au>Mullen, J. P.</au><au>Neeley, J.</au><au>Nonino, M.</au><au>Prudil, Z.</au><au>Salaris, M</au><au>Stetson, P. B.</au><au>Valenti, E.</au><au>Zoccali, M.</au><aucorp>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Sloan Digital Sky Survey (SDSS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy</atitle><jtitle>The Astrophysical journal</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>919</volume><issue>2</issue><spage>118</spage><pages>118-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We discuss the largest and most homogeneous spectroscopic data set of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution (
Δ
S method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7941 RRLs were supplemented with similar estimates that are available in the literature, ending up with 9015 RRLs (6150 RRab, 2865 RRc). The metallicity distribution shows a mean value of 〈[Fe/H]〉 = −1.51 ± 0.01, and
σ
(standard deviation) = 0.41 dex with a long metal-poor tail approaching [Fe/H] ≃ − 3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (〈[Fe/H]〉
ab
= −1.48 ± 0.01,
σ
= 0.41 dex) than RRc variables (〈[Fe/H]〉
c
= −1.58 ± 0.01,
σ
= 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude versus period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%, respectively. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (N
c
/N
tot
) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ∼0.25 to ∼0.36 in the metal-poor regime, it decreases from ∼0.36 to ∼0.18 for −1.8 ≤ [Fe/H] ≤ −0.9 and it increases to a value of ∼0.3 approaching solar iron abundance.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/ac1115</doi><orcidid>https://orcid.org/0000-0002-2744-1928</orcidid><orcidid>https://orcid.org/0000-0002-1891-3794</orcidid><orcidid>https://orcid.org/0000-0001-5479-5062</orcidid><orcidid>https://orcid.org/0000-0001-8926-3496</orcidid><orcidid>https://orcid.org/0000-0001-8514-7957</orcidid><orcidid>https://orcid.org/0000-0002-9144-7726</orcidid><orcidid>https://orcid.org/0000-0002-5829-2267</orcidid><orcidid>https://orcid.org/0000-0001-9910-9230</orcidid><orcidid>https://orcid.org/0000-0003-0376-6928</orcidid><orcidid>https://orcid.org/0000-0003-3096-4161</orcidid><orcidid>https://orcid.org/0000-0002-3456-5929</orcidid><orcidid>https://orcid.org/0000-0002-8894-836X</orcidid><orcidid>https://orcid.org/0000-0001-5497-5805</orcidid><orcidid>https://orcid.org/0000-0001-6342-9662</orcidid><orcidid>https://orcid.org/0000-0002-6092-7145</orcidid><orcidid>https://orcid.org/0000-0002-5032-2476</orcidid><orcidid>https://orcid.org/0000-0001-5292-6380</orcidid><orcidid>https://orcid.org/0000-0001-8209-0449</orcidid><orcidid>https://orcid.org/0000-0001-6074-6830</orcidid><orcidid>https://orcid.org/0000-0001-5829-111X</orcidid><orcidid>https://orcid.org/0000-0001-7511-2830</orcidid><orcidid>https://orcid.org/0000-0001-9816-5484</orcidid><orcidid>https://orcid.org/0000-0002-4896-8841</orcidid><orcidid>https://orcid.org/0000-0002-9934-1352</orcidid><orcidid>https://orcid.org/0000-0001-7990-6849</orcidid><orcidid>https://orcid.org/0000-0002-8162-3810</orcidid><orcidid>https://orcid.org/0000-0002-1650-2764</orcidid><orcidid>https://orcid.org/0000000185147957</orcidid><orcidid>https://orcid.org/0000000160746830</orcidid><orcidid>https://orcid.org/0000000199109230</orcidid><orcidid>https://orcid.org/0000000227441928</orcidid><orcidid>https://orcid.org/0000000248968841</orcidid><orcidid>https://orcid.org/0000000198165484</orcidid><orcidid>https://orcid.org/0000000154795062</orcidid><orcidid>https://orcid.org/0000000175112830</orcidid><orcidid>https://orcid.org/0000000179906849</orcidid><orcidid>https://orcid.org/0000000154975805</orcidid><orcidid>https://orcid.org/0000000218913794</orcidid><orcidid>https://orcid.org/0000000303766928</orcidid><orcidid>https://orcid.org/0000000234565929</orcidid><orcidid>https://orcid.org/0000000258292267</orcidid><orcidid>https://orcid.org/0000000216502764</orcidid><orcidid>https://orcid.org/0000000299341352</orcidid><orcidid>https://orcid.org/0000000152926380</orcidid><orcidid>https://orcid.org/0000000250322476</orcidid><orcidid>https://orcid.org/0000000291447726</orcidid><orcidid>https://orcid.org/0000000281623810</orcidid><orcidid>https://orcid.org/0000000163429662</orcidid><orcidid>https://orcid.org/0000000260927145</orcidid><orcidid>https://orcid.org/0000000330964161</orcidid><orcidid>https://orcid.org/0000000182090449</orcidid><orcidid>https://orcid.org/000000015829111X</orcidid><orcidid>https://orcid.org/000000028894836X</orcidid><orcidid>https://orcid.org/0000000189263496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-10, Vol.919 (2), p.118 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_1983176 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Abundance Amplitudes Astronomy & Astrophysics ASTRONOMY AND ASTROPHYSICS Astrophysics Globular clusters Iron Metallicity Metals Milky Way stellar halo Physics RR Lyrae variable stars Spectroscopy |
title | On the Use of Field RR Lyrae As Galactic Probes: IV. New Insights Into and Around the Oosterhoff Dichotomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Field%20RR%20Lyrae%20As%20Galactic%20Probes:%20IV.%20New%20Insights%20Into%20and%20Around%20the%20Oosterhoff%20Dichotomy&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fabrizio,%20M.&rft.aucorp=US%20Department%20of%20Energy%20(USDOE),%20Washington,%20DC%20(United%20States).%20Office%20of%20Science,%20Sloan%20Digital%20Sky%20Survey%20(SDSS)&rft.date=2021-10-01&rft.volume=919&rft.issue=2&rft.spage=118&rft.pages=118-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac1115&rft_dat=%3Cproquest_osti_%3E2579134724%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579134724&rft_id=info:pmid/&rfr_iscdi=true |