Resolving the gravitational redshift across a millimetre-scale atomic sample
Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift 1 . As fundamental probes of space and time, atomic clocks have long served to test this prediction at di...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-02, Vol.602 (7897), p.420-424 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 7897 |
container_start_page | 420 |
container_title | Nature (London) |
container_volume | 602 |
creator | Bothwell, Tobias Kennedy, Colin J. Aeppli, Alexander Kedar, Dhruv Robinson, John M. Oelker, Eric Staron, Alexander Ye, Jun |
description | Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift
1
. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres
2
–
4
. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10
−21
. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.
Reducing the fractional uncertainty over the measurement of the frequency of an ensemble of trapped strontium atoms enables observation of the gravitational redshift at the submillimetre scale. |
doi_str_mv | 10.1038/s41586-021-04349-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1982150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629866365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-212a361531278e478e814064e4f802a49e550a18482fdb3e248256a2094c367d3</originalsourceid><addsrcrecordid>eNp9kc9rVDEQx4NY7Fr9BzzIw168RCc_X95RitXCglD0HNLsvN2UvJc1yRb875vtqwo99DDMQD7zDcyHkHcMPjEQ5nORTBlNgTMKUsiB9i_IisleU6lN_5KsALihYIQ-Ja9LuQUAxXr5ipyK1oWQekXW11hSvAvztqs77LbZ3YXqakizi13GTdmFsXbO51RK57opxBgmrBlp8S5i52qagu-Km_YR35CT0cWCbx_7Gfl1-fXnxXe6_vHt6uLLmnoJvFLOuBOaKcF4b1C2MkyClihHA9zJAZUCx4w0fNzcCORtUNpxGKQXut-IM_JhyU2lBlt8qOh3Ps0z-mrZYDhT0KCPC7TP6fcBS7VTKB5jdDOmQ7Fc88FoLbRq6PkT9DYdcrvAkRKghFD9keIL9XCMjKPd5zC5_McysEchdhFimxD7IMT2ben9Y_ThZsLNv5W_BhogFqC0p3mL-f_fz8TeA54tk2k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630533575</pqid></control><display><type>article</type><title>Resolving the gravitational redshift across a millimetre-scale atomic sample</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bothwell, Tobias ; Kennedy, Colin J. ; Aeppli, Alexander ; Kedar, Dhruv ; Robinson, John M. ; Oelker, Eric ; Staron, Alexander ; Ye, Jun</creator><creatorcontrib>Bothwell, Tobias ; Kennedy, Colin J. ; Aeppli, Alexander ; Kedar, Dhruv ; Robinson, John M. ; Oelker, Eric ; Staron, Alexander ; Ye, Jun ; National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><description>Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift
1
. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres
2
–
4
. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10
−21
. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.
Reducing the fractional uncertainty over the measurement of the frequency of an ensemble of trapped strontium atoms enables observation of the gravitational redshift at the submillimetre scale.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04349-7</identifier><identifier>PMID: 35173346</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/36/1125 ; 639/766/483/1255 ; 639/766/930/527 ; Atomic clocks ; Clocks & watches ; Frequency measurement ; Gravity ; Humanities and Social Sciences ; multidisciplinary ; Object recognition ; Perturbation ; Quantum mechanics ; Red shift ; Relativity ; Science ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Spectrum analysis ; Strontium ; Theory of relativity ; Wave functions</subject><ispartof>Nature (London), 2022-02, Vol.602 (7897), p.420-424</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.</rights><rights>Copyright Nature Publishing Group Feb 17, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-212a361531278e478e814064e4f802a49e550a18482fdb3e248256a2094c367d3</citedby><cites>FETCH-LOGICAL-c402t-212a361531278e478e814064e4f802a49e550a18482fdb3e248256a2094c367d3</cites><orcidid>0000-0002-3916-1595 ; 0000-0003-1117-8616 ; 0000-0002-9532-1290 ; 0000-0003-0076-2112 ; 0000000239161595 ; 0000000311178616 ; 0000000300762112 ; 0000000295321290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04349-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04349-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35173346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1982150$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Kennedy, Colin J.</creatorcontrib><creatorcontrib>Aeppli, Alexander</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Robinson, John M.</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Staron, Alexander</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><title>Resolving the gravitational redshift across a millimetre-scale atomic sample</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift
1
. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres
2
–
4
. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10
−21
. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.
Reducing the fractional uncertainty over the measurement of the frequency of an ensemble of trapped strontium atoms enables observation of the gravitational redshift at the submillimetre scale.</description><subject>140/125</subject><subject>639/766/36/1125</subject><subject>639/766/483/1255</subject><subject>639/766/930/527</subject><subject>Atomic clocks</subject><subject>Clocks & watches</subject><subject>Frequency measurement</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Object recognition</subject><subject>Perturbation</subject><subject>Quantum mechanics</subject><subject>Red shift</subject><subject>Relativity</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Strontium</subject><subject>Theory of relativity</subject><subject>Wave functions</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9rVDEQx4NY7Fr9BzzIw168RCc_X95RitXCglD0HNLsvN2UvJc1yRb875vtqwo99DDMQD7zDcyHkHcMPjEQ5nORTBlNgTMKUsiB9i_IisleU6lN_5KsALihYIQ-Ja9LuQUAxXr5ipyK1oWQekXW11hSvAvztqs77LbZ3YXqakizi13GTdmFsXbO51RK57opxBgmrBlp8S5i52qagu-Km_YR35CT0cWCbx_7Gfl1-fXnxXe6_vHt6uLLmnoJvFLOuBOaKcF4b1C2MkyClihHA9zJAZUCx4w0fNzcCORtUNpxGKQXut-IM_JhyU2lBlt8qOh3Ps0z-mrZYDhT0KCPC7TP6fcBS7VTKB5jdDOmQ7Fc88FoLbRq6PkT9DYdcrvAkRKghFD9keIL9XCMjKPd5zC5_McysEchdhFimxD7IMT2ben9Y_ThZsLNv5W_BhogFqC0p3mL-f_fz8TeA54tk2k</recordid><startdate>20220217</startdate><enddate>20220217</enddate><creator>Bothwell, Tobias</creator><creator>Kennedy, Colin J.</creator><creator>Aeppli, Alexander</creator><creator>Kedar, Dhruv</creator><creator>Robinson, John M.</creator><creator>Oelker, Eric</creator><creator>Staron, Alexander</creator><creator>Ye, Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3916-1595</orcidid><orcidid>https://orcid.org/0000-0003-1117-8616</orcidid><orcidid>https://orcid.org/0000-0002-9532-1290</orcidid><orcidid>https://orcid.org/0000-0003-0076-2112</orcidid><orcidid>https://orcid.org/0000000239161595</orcidid><orcidid>https://orcid.org/0000000311178616</orcidid><orcidid>https://orcid.org/0000000300762112</orcidid><orcidid>https://orcid.org/0000000295321290</orcidid></search><sort><creationdate>20220217</creationdate><title>Resolving the gravitational redshift across a millimetre-scale atomic sample</title><author>Bothwell, Tobias ; Kennedy, Colin J. ; Aeppli, Alexander ; Kedar, Dhruv ; Robinson, John M. ; Oelker, Eric ; Staron, Alexander ; Ye, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-212a361531278e478e814064e4f802a49e550a18482fdb3e248256a2094c367d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/125</topic><topic>639/766/36/1125</topic><topic>639/766/483/1255</topic><topic>639/766/930/527</topic><topic>Atomic clocks</topic><topic>Clocks & watches</topic><topic>Frequency measurement</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Object recognition</topic><topic>Perturbation</topic><topic>Quantum mechanics</topic><topic>Red shift</topic><topic>Relativity</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Strontium</topic><topic>Theory of relativity</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bothwell, Tobias</creatorcontrib><creatorcontrib>Kennedy, Colin J.</creatorcontrib><creatorcontrib>Aeppli, Alexander</creatorcontrib><creatorcontrib>Kedar, Dhruv</creatorcontrib><creatorcontrib>Robinson, John M.</creatorcontrib><creatorcontrib>Oelker, Eric</creatorcontrib><creatorcontrib>Staron, Alexander</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bothwell, Tobias</au><au>Kennedy, Colin J.</au><au>Aeppli, Alexander</au><au>Kedar, Dhruv</au><au>Robinson, John M.</au><au>Oelker, Eric</au><au>Staron, Alexander</au><au>Ye, Jun</au><aucorp>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the gravitational redshift across a millimetre-scale atomic sample</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-02-17</date><risdate>2022</risdate><volume>602</volume><issue>7897</issue><spage>420</spage><epage>424</epage><pages>420-424</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift
1
. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres
2
–
4
. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10
−21
. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.
Reducing the fractional uncertainty over the measurement of the frequency of an ensemble of trapped strontium atoms enables observation of the gravitational redshift at the submillimetre scale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35173346</pmid><doi>10.1038/s41586-021-04349-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3916-1595</orcidid><orcidid>https://orcid.org/0000-0003-1117-8616</orcidid><orcidid>https://orcid.org/0000-0002-9532-1290</orcidid><orcidid>https://orcid.org/0000-0003-0076-2112</orcidid><orcidid>https://orcid.org/0000000239161595</orcidid><orcidid>https://orcid.org/0000000311178616</orcidid><orcidid>https://orcid.org/0000000300762112</orcidid><orcidid>https://orcid.org/0000000295321290</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-02, Vol.602 (7897), p.420-424 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1982150 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 140/125 639/766/36/1125 639/766/483/1255 639/766/930/527 Atomic clocks Clocks & watches Frequency measurement Gravity Humanities and Social Sciences multidisciplinary Object recognition Perturbation Quantum mechanics Red shift Relativity Science Science & Technology - Other Topics Science (multidisciplinary) Spectrum analysis Strontium Theory of relativity Wave functions |
title | Resolving the gravitational redshift across a millimetre-scale atomic sample |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20gravitational%20redshift%20across%20a%20millimetre-scale%20atomic%20sample&rft.jtitle=Nature%20(London)&rft.au=Bothwell,%20Tobias&rft.aucorp=National%20Quantum%20Information%20Science%20(QIS)%20Research%20Centers%20(United%20States).%20Quantum%20Systems%20Accelerator%20(QSA)&rft.date=2022-02-17&rft.volume=602&rft.issue=7897&rft.spage=420&rft.epage=424&rft.pages=420-424&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04349-7&rft_dat=%3Cproquest_osti_%3E2629866365%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630533575&rft_id=info:pmid/35173346&rfr_iscdi=true |