Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics

Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2021-12, Vol.270 (C)
Hauptverfasser: Wang, Xian, Biederman, Joel A., Knowles, John F., Scott, Russell L., Turner, Alexander J., Dannenberg, Matthew P., Köhler, Philipp, Frankenberg, Christian, Litvak, Marcy E., Flerchinger, Gerald N., Law, Beverly E., Kwon, Hyojung, Reed, Sasha C., Parton, William J., Barron-Gafford, Greg A., Smith, William K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Remote sensing of environment
container_volume 270
creator Wang, Xian
Biederman, Joel A.
Knowles, John F.
Scott, Russell L.
Turner, Alexander J.
Dannenberg, Matthew P.
Köhler, Philipp
Frankenberg, Christian
Litvak, Marcy E.
Flerchinger, Gerald N.
Law, Beverly E.
Kwon, Hyojung
Reed, Sasha C.
Parton, William J.
Barron-Gafford, Greg A.
Smith, William K.
description Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)] remains relatively limited due in part to the limited availability of long-term data and unique challenges associated with satellite remote sensing across dryland ecosystems. Here, we comprehensively evaluated longstanding and emerging satellite vegetation proxies in their ability to capture seasonal dryland GPP dynamics. Specifically, we evaluated: 1) reflectance-based proxies normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), near infrared reflectance index (NIRv), and kernel NDVI (kNDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS); and 2) newly available physiologically-based proxy solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI). As a performance benchmark, we used GPP estimates from a robust network of 21 western United States eddy covariance tower sites that span representative gradients in dryland ecosystem climate and functional composition. We found that NIRv and SIF were the best performing GPP proxies and captured complementary aspects of seasonal GPP dynamics across dryland ecosystem types. NIRv offered better performance than the other proxies across relatively low-productivity, sparsely non-evergreen vegetated sites (R2 = 0.59 ± 0.13); whereas SIF best captured seasonal dynamics across relatively high-productivity sites, including evergreen-dominated sites (R2 = 0.74 ± 0.07). Notably, across grass-dominated sites, all reflectance-based proxies (NDVI, SAVI, NIRv and kNDVI) showed significant seasonal bias (hysteresis) that strengthened with the total fraction of woody vegetation cover, likely due to seasonal patterns in woody vegetation reflectance that are unrelated to or decoupled from GPP. In conclusion, future efforts to fully integrate the complementary strengths of NIRv and SIF could significantly improve our understanding and representation of dryland GPP dynamics in satellite-based models.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1981744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981744</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19817443</originalsourceid><addsrcrecordid>eNqNjk1KBDEQhYMo2P7cIbhvSM9kSM9aFPe6H4qkYkeqk5BUD-QmHteMeABXb_E-vveuxDDN5jgqo_S1GJTa61HvDuZW3NX6pdR0mM00iO93YCQKjLImgjKG6DaLTtqFUkl5aUTS05YKVovRooToZMRf0hcoHS3oCS3DpbWQeSs905oJV4wMpUmouQNVJi9daXRRnPETGTikKHNJfZPDOXCTrkVYg60P4sYDVXz8y3vx9Pry8fw2psrhVG1_bBebYuzi03ScJ6P1_l_QDzJWXbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xian ; Biederman, Joel A. ; Knowles, John F. ; Scott, Russell L. ; Turner, Alexander J. ; Dannenberg, Matthew P. ; Köhler, Philipp ; Frankenberg, Christian ; Litvak, Marcy E. ; Flerchinger, Gerald N. ; Law, Beverly E. ; Kwon, Hyojung ; Reed, Sasha C. ; Parton, William J. ; Barron-Gafford, Greg A. ; Smith, William K.</creator><creatorcontrib>Wang, Xian ; Biederman, Joel A. ; Knowles, John F. ; Scott, Russell L. ; Turner, Alexander J. ; Dannenberg, Matthew P. ; Köhler, Philipp ; Frankenberg, Christian ; Litvak, Marcy E. ; Flerchinger, Gerald N. ; Law, Beverly E. ; Kwon, Hyojung ; Reed, Sasha C. ; Parton, William J. ; Barron-Gafford, Greg A. ; Smith, William K. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). AmeriFlux</creatorcontrib><description>Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)] remains relatively limited due in part to the limited availability of long-term data and unique challenges associated with satellite remote sensing across dryland ecosystems. Here, we comprehensively evaluated longstanding and emerging satellite vegetation proxies in their ability to capture seasonal dryland GPP dynamics. Specifically, we evaluated: 1) reflectance-based proxies normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), near infrared reflectance index (NIRv), and kernel NDVI (kNDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS); and 2) newly available physiologically-based proxy solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI). As a performance benchmark, we used GPP estimates from a robust network of 21 western United States eddy covariance tower sites that span representative gradients in dryland ecosystem climate and functional composition. We found that NIRv and SIF were the best performing GPP proxies and captured complementary aspects of seasonal GPP dynamics across dryland ecosystem types. NIRv offered better performance than the other proxies across relatively low-productivity, sparsely non-evergreen vegetated sites (R2 = 0.59 ± 0.13); whereas SIF best captured seasonal dynamics across relatively high-productivity sites, including evergreen-dominated sites (R2 = 0.74 ± 0.07). Notably, across grass-dominated sites, all reflectance-based proxies (NDVI, SAVI, NIRv and kNDVI) showed significant seasonal bias (hysteresis) that strengthened with the total fraction of woody vegetation cover, likely due to seasonal patterns in woody vegetation reflectance that are unrelated to or decoupled from GPP. In conclusion, future efforts to fully integrate the complementary strengths of NIRv and SIF could significantly improve our understanding and representation of dryland GPP dynamics in satellite-based models.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Dryland heterogeneity ; ENVIRONMENTAL SCIENCES ; Environmental Sciences &amp; Ecology ; Gross primary productivity ; Imaging Science &amp; Photographic Technology ; Near-infrared reflectance ; Remote Sensing ; Solar-induced fluorescence</subject><ispartof>Remote sensing of environment, 2021-12, Vol.270 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981744$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Biederman, Joel A.</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Turner, Alexander J.</creatorcontrib><creatorcontrib>Dannenberg, Matthew P.</creatorcontrib><creatorcontrib>Köhler, Philipp</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Litvak, Marcy E.</creatorcontrib><creatorcontrib>Flerchinger, Gerald N.</creatorcontrib><creatorcontrib>Law, Beverly E.</creatorcontrib><creatorcontrib>Kwon, Hyojung</creatorcontrib><creatorcontrib>Reed, Sasha C.</creatorcontrib><creatorcontrib>Parton, William J.</creatorcontrib><creatorcontrib>Barron-Gafford, Greg A.</creatorcontrib><creatorcontrib>Smith, William K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). AmeriFlux</creatorcontrib><title>Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics</title><title>Remote sensing of environment</title><description>Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)] remains relatively limited due in part to the limited availability of long-term data and unique challenges associated with satellite remote sensing across dryland ecosystems. Here, we comprehensively evaluated longstanding and emerging satellite vegetation proxies in their ability to capture seasonal dryland GPP dynamics. Specifically, we evaluated: 1) reflectance-based proxies normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), near infrared reflectance index (NIRv), and kernel NDVI (kNDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS); and 2) newly available physiologically-based proxy solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI). As a performance benchmark, we used GPP estimates from a robust network of 21 western United States eddy covariance tower sites that span representative gradients in dryland ecosystem climate and functional composition. We found that NIRv and SIF were the best performing GPP proxies and captured complementary aspects of seasonal GPP dynamics across dryland ecosystem types. NIRv offered better performance than the other proxies across relatively low-productivity, sparsely non-evergreen vegetated sites (R2 = 0.59 ± 0.13); whereas SIF best captured seasonal dynamics across relatively high-productivity sites, including evergreen-dominated sites (R2 = 0.74 ± 0.07). Notably, across grass-dominated sites, all reflectance-based proxies (NDVI, SAVI, NIRv and kNDVI) showed significant seasonal bias (hysteresis) that strengthened with the total fraction of woody vegetation cover, likely due to seasonal patterns in woody vegetation reflectance that are unrelated to or decoupled from GPP. In conclusion, future efforts to fully integrate the complementary strengths of NIRv and SIF could significantly improve our understanding and representation of dryland GPP dynamics in satellite-based models.</description><subject>Dryland heterogeneity</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Gross primary productivity</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Near-infrared reflectance</subject><subject>Remote Sensing</subject><subject>Solar-induced fluorescence</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjk1KBDEQhYMo2P7cIbhvSM9kSM9aFPe6H4qkYkeqk5BUD-QmHteMeABXb_E-vveuxDDN5jgqo_S1GJTa61HvDuZW3NX6pdR0mM00iO93YCQKjLImgjKG6DaLTtqFUkl5aUTS05YKVovRooToZMRf0hcoHS3oCS3DpbWQeSs905oJV4wMpUmouQNVJi9daXRRnPETGTikKHNJfZPDOXCTrkVYg60P4sYDVXz8y3vx9Pry8fw2psrhVG1_bBebYuzi03ScJ6P1_l_QDzJWXbI</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>Wang, Xian</creator><creator>Biederman, Joel A.</creator><creator>Knowles, John F.</creator><creator>Scott, Russell L.</creator><creator>Turner, Alexander J.</creator><creator>Dannenberg, Matthew P.</creator><creator>Köhler, Philipp</creator><creator>Frankenberg, Christian</creator><creator>Litvak, Marcy E.</creator><creator>Flerchinger, Gerald N.</creator><creator>Law, Beverly E.</creator><creator>Kwon, Hyojung</creator><creator>Reed, Sasha C.</creator><creator>Parton, William J.</creator><creator>Barron-Gafford, Greg A.</creator><creator>Smith, William K.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20211231</creationdate><title>Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics</title><author>Wang, Xian ; Biederman, Joel A. ; Knowles, John F. ; Scott, Russell L. ; Turner, Alexander J. ; Dannenberg, Matthew P. ; Köhler, Philipp ; Frankenberg, Christian ; Litvak, Marcy E. ; Flerchinger, Gerald N. ; Law, Beverly E. ; Kwon, Hyojung ; Reed, Sasha C. ; Parton, William J. ; Barron-Gafford, Greg A. ; Smith, William K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19817443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dryland heterogeneity</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Gross primary productivity</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Near-infrared reflectance</topic><topic>Remote Sensing</topic><topic>Solar-induced fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Biederman, Joel A.</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Turner, Alexander J.</creatorcontrib><creatorcontrib>Dannenberg, Matthew P.</creatorcontrib><creatorcontrib>Köhler, Philipp</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Litvak, Marcy E.</creatorcontrib><creatorcontrib>Flerchinger, Gerald N.</creatorcontrib><creatorcontrib>Law, Beverly E.</creatorcontrib><creatorcontrib>Kwon, Hyojung</creatorcontrib><creatorcontrib>Reed, Sasha C.</creatorcontrib><creatorcontrib>Parton, William J.</creatorcontrib><creatorcontrib>Barron-Gafford, Greg A.</creatorcontrib><creatorcontrib>Smith, William K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). AmeriFlux</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xian</au><au>Biederman, Joel A.</au><au>Knowles, John F.</au><au>Scott, Russell L.</au><au>Turner, Alexander J.</au><au>Dannenberg, Matthew P.</au><au>Köhler, Philipp</au><au>Frankenberg, Christian</au><au>Litvak, Marcy E.</au><au>Flerchinger, Gerald N.</au><au>Law, Beverly E.</au><au>Kwon, Hyojung</au><au>Reed, Sasha C.</au><au>Parton, William J.</au><au>Barron-Gafford, Greg A.</au><au>Smith, William K.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). AmeriFlux</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics</atitle><jtitle>Remote sensing of environment</jtitle><date>2021-12-31</date><risdate>2021</risdate><volume>270</volume><issue>C</issue><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)] remains relatively limited due in part to the limited availability of long-term data and unique challenges associated with satellite remote sensing across dryland ecosystems. Here, we comprehensively evaluated longstanding and emerging satellite vegetation proxies in their ability to capture seasonal dryland GPP dynamics. Specifically, we evaluated: 1) reflectance-based proxies normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), near infrared reflectance index (NIRv), and kernel NDVI (kNDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS); and 2) newly available physiologically-based proxy solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI). As a performance benchmark, we used GPP estimates from a robust network of 21 western United States eddy covariance tower sites that span representative gradients in dryland ecosystem climate and functional composition. We found that NIRv and SIF were the best performing GPP proxies and captured complementary aspects of seasonal GPP dynamics across dryland ecosystem types. NIRv offered better performance than the other proxies across relatively low-productivity, sparsely non-evergreen vegetated sites (R2 = 0.59 ± 0.13); whereas SIF best captured seasonal dynamics across relatively high-productivity sites, including evergreen-dominated sites (R2 = 0.74 ± 0.07). Notably, across grass-dominated sites, all reflectance-based proxies (NDVI, SAVI, NIRv and kNDVI) showed significant seasonal bias (hysteresis) that strengthened with the total fraction of woody vegetation cover, likely due to seasonal patterns in woody vegetation reflectance that are unrelated to or decoupled from GPP. In conclusion, future efforts to fully integrate the complementary strengths of NIRv and SIF could significantly improve our understanding and representation of dryland GPP dynamics in satellite-based models.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2021-12, Vol.270 (C)
issn 0034-4257
1879-0704
language eng
recordid cdi_osti_scitechconnect_1981744
source Elsevier ScienceDirect Journals
subjects Dryland heterogeneity
ENVIRONMENTAL SCIENCES
Environmental Sciences & Ecology
Gross primary productivity
Imaging Science & Photographic Technology
Near-infrared reflectance
Remote Sensing
Solar-induced fluorescence
title Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20solar-induced%20chlorophyll%20fluorescence%20and%20near-infrared%20reflectance%20capture%20complementary%20aspects%20of%20dryland%20vegetation%20productivity%20dynamics&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Wang,%20Xian&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20AmeriFlux&rft.date=2021-12-31&rft.volume=270&rft.issue=C&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/&rft_dat=%3Costi%3E1981744%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true