Thermally drawn rechargeable battery fiber enables pervasive power

The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today (Kidlington, England) England), 2021-12, Vol.52 (C)
Hauptverfasser: Khudiyev, Tural, Grena, Benjamin, Loke, Gabriel, Hou, Chong, Jang, Hyeonji, Lee, Jinhyuk, Noel, Grace H., Alain, Juliette, Joannopoulos, John, Xu, Kang, Li, Ju, Fink, Yoel, Lee, Jung Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Materials today (Kidlington, England)
container_volume 52
creator Khudiyev, Tural
Grena, Benjamin
Loke, Gabriel
Hou, Chong
Jang, Hyeonji
Lee, Jinhyuk
Noel, Grace H.
Alain, Juliette
Joannopoulos, John
Xu, Kang
Li, Ju
Fink, Yoel
Lee, Jung Tae
description The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1981704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981704</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19817043</originalsourceid><addsrcrecordid>eNqNjEsKwjAURYMoWD97CM4LeaaadqooLqBzSeOrjcS0vISW7t4KLsDRPRwOd8YSyJVMMxByPrE8FqkSe1iyVQgvIUABHBJ2Khukt3Zu5A_Sg-eEptH0RF055JWOEWnkta2QOPqvDLxD6nWwPfKuHZA2bFFrF3D72zXbXS_l-Za2Idp7MDZOl6b1Hk28Q5GDEpn8K_oAjYo7sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elsevier SD SD College Edition Journals Collection - Physical Sciences [SCPS]</source><creator>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae</creator><creatorcontrib>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae ; Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><description>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (&lt;10–3 m) and high aspect ratios (&gt;106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</description><identifier>ISSN: 1369-7021</identifier><identifier>EISSN: 1873-4103</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>3D printing ; Fabric electronics ; Li-ion battery ; MATERIALS SCIENCE ; Multimaterial thermal drawing ; Ultra-long fiber battery</subject><ispartof>Materials today (Kidlington, England), 2021-12, Vol.52 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981704$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khudiyev, Tural</creatorcontrib><creatorcontrib>Grena, Benjamin</creatorcontrib><creatorcontrib>Loke, Gabriel</creatorcontrib><creatorcontrib>Hou, Chong</creatorcontrib><creatorcontrib>Jang, Hyeonji</creatorcontrib><creatorcontrib>Lee, Jinhyuk</creatorcontrib><creatorcontrib>Noel, Grace H.</creatorcontrib><creatorcontrib>Alain, Juliette</creatorcontrib><creatorcontrib>Joannopoulos, John</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><title>Materials today (Kidlington, England)</title><description>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (&lt;10–3 m) and high aspect ratios (&gt;106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</description><subject>3D printing</subject><subject>Fabric electronics</subject><subject>Li-ion battery</subject><subject>MATERIALS SCIENCE</subject><subject>Multimaterial thermal drawing</subject><subject>Ultra-long fiber battery</subject><issn>1369-7021</issn><issn>1873-4103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKwjAURYMoWD97CM4LeaaadqooLqBzSeOrjcS0vISW7t4KLsDRPRwOd8YSyJVMMxByPrE8FqkSe1iyVQgvIUABHBJ2Khukt3Zu5A_Sg-eEptH0RF055JWOEWnkta2QOPqvDLxD6nWwPfKuHZA2bFFrF3D72zXbXS_l-Za2Idp7MDZOl6b1Hk28Q5GDEpn8K_oAjYo7sA</recordid><startdate>20211220</startdate><enddate>20211220</enddate><creator>Khudiyev, Tural</creator><creator>Grena, Benjamin</creator><creator>Loke, Gabriel</creator><creator>Hou, Chong</creator><creator>Jang, Hyeonji</creator><creator>Lee, Jinhyuk</creator><creator>Noel, Grace H.</creator><creator>Alain, Juliette</creator><creator>Joannopoulos, John</creator><creator>Xu, Kang</creator><creator>Li, Ju</creator><creator>Fink, Yoel</creator><creator>Lee, Jung Tae</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20211220</creationdate><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><author>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19817043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Fabric electronics</topic><topic>Li-ion battery</topic><topic>MATERIALS SCIENCE</topic><topic>Multimaterial thermal drawing</topic><topic>Ultra-long fiber battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khudiyev, Tural</creatorcontrib><creatorcontrib>Grena, Benjamin</creatorcontrib><creatorcontrib>Loke, Gabriel</creatorcontrib><creatorcontrib>Hou, Chong</creatorcontrib><creatorcontrib>Jang, Hyeonji</creatorcontrib><creatorcontrib>Lee, Jinhyuk</creatorcontrib><creatorcontrib>Noel, Grace H.</creatorcontrib><creatorcontrib>Alain, Juliette</creatorcontrib><creatorcontrib>Joannopoulos, John</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials today (Kidlington, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khudiyev, Tural</au><au>Grena, Benjamin</au><au>Loke, Gabriel</au><au>Hou, Chong</au><au>Jang, Hyeonji</au><au>Lee, Jinhyuk</au><au>Noel, Grace H.</au><au>Alain, Juliette</au><au>Joannopoulos, John</au><au>Xu, Kang</au><au>Li, Ju</au><au>Fink, Yoel</au><au>Lee, Jung Tae</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally drawn rechargeable battery fiber enables pervasive power</atitle><jtitle>Materials today (Kidlington, England)</jtitle><date>2021-12-20</date><risdate>2021</risdate><volume>52</volume><issue>C</issue><issn>1369-7021</issn><eissn>1873-4103</eissn><abstract>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (&lt;10–3 m) and high aspect ratios (&gt;106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7021
ispartof Materials today (Kidlington, England), 2021-12, Vol.52 (C)
issn 1369-7021
1873-4103
language eng
recordid cdi_osti_scitechconnect_1981704
source Elsevier ScienceDirect Journals Complete; Elsevier SD SD College Edition Journals Collection - Physical Sciences [SCPS]
subjects 3D printing
Fabric electronics
Li-ion battery
MATERIALS SCIENCE
Multimaterial thermal drawing
Ultra-long fiber battery
title Thermally drawn rechargeable battery fiber enables pervasive power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20drawn%20rechargeable%20battery%20fiber%20enables%20pervasive%20power&rft.jtitle=Materials%20today%20(Kidlington,%20England)&rft.au=Khudiyev,%20Tural&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Joint%20Center%20for%20Energy%20Storage%20Research%20(JCESR)&rft.date=2021-12-20&rft.volume=52&rft.issue=C&rft.issn=1369-7021&rft.eissn=1873-4103&rft_id=info:doi/&rft_dat=%3Costi%3E1981704%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true