Thermally drawn rechargeable battery fiber enables pervasive power
The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervas...
Gespeichert in:
Veröffentlicht in: | Materials today (Kidlington, England) England), 2021-12, Vol.52 (C) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | Materials today (Kidlington, England) |
container_volume | 52 |
creator | Khudiyev, Tural Grena, Benjamin Loke, Gabriel Hou, Chong Jang, Hyeonji Lee, Jinhyuk Noel, Grace H. Alain, Juliette Joannopoulos, John Xu, Kang Li, Ju Fink, Yoel Lee, Jung Tae |
description | The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1981704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981704</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19817043</originalsourceid><addsrcrecordid>eNqNjEsKwjAURYMoWD97CM4LeaaadqooLqBzSeOrjcS0vISW7t4KLsDRPRwOd8YSyJVMMxByPrE8FqkSe1iyVQgvIUABHBJ2Khukt3Zu5A_Sg-eEptH0RF055JWOEWnkta2QOPqvDLxD6nWwPfKuHZA2bFFrF3D72zXbXS_l-Za2Idp7MDZOl6b1Hk28Q5GDEpn8K_oAjYo7sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elsevier SD SD College Edition Journals Collection - Physical Sciences [SCPS]</source><creator>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae</creator><creatorcontrib>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae ; Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><description>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (<10–3 m) and high aspect ratios (>106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</description><identifier>ISSN: 1369-7021</identifier><identifier>EISSN: 1873-4103</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>3D printing ; Fabric electronics ; Li-ion battery ; MATERIALS SCIENCE ; Multimaterial thermal drawing ; Ultra-long fiber battery</subject><ispartof>Materials today (Kidlington, England), 2021-12, Vol.52 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981704$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khudiyev, Tural</creatorcontrib><creatorcontrib>Grena, Benjamin</creatorcontrib><creatorcontrib>Loke, Gabriel</creatorcontrib><creatorcontrib>Hou, Chong</creatorcontrib><creatorcontrib>Jang, Hyeonji</creatorcontrib><creatorcontrib>Lee, Jinhyuk</creatorcontrib><creatorcontrib>Noel, Grace H.</creatorcontrib><creatorcontrib>Alain, Juliette</creatorcontrib><creatorcontrib>Joannopoulos, John</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><title>Materials today (Kidlington, England)</title><description>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (<10–3 m) and high aspect ratios (>106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</description><subject>3D printing</subject><subject>Fabric electronics</subject><subject>Li-ion battery</subject><subject>MATERIALS SCIENCE</subject><subject>Multimaterial thermal drawing</subject><subject>Ultra-long fiber battery</subject><issn>1369-7021</issn><issn>1873-4103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKwjAURYMoWD97CM4LeaaadqooLqBzSeOrjcS0vISW7t4KLsDRPRwOd8YSyJVMMxByPrE8FqkSe1iyVQgvIUABHBJ2Khukt3Zu5A_Sg-eEptH0RF055JWOEWnkta2QOPqvDLxD6nWwPfKuHZA2bFFrF3D72zXbXS_l-Za2Idp7MDZOl6b1Hk28Q5GDEpn8K_oAjYo7sA</recordid><startdate>20211220</startdate><enddate>20211220</enddate><creator>Khudiyev, Tural</creator><creator>Grena, Benjamin</creator><creator>Loke, Gabriel</creator><creator>Hou, Chong</creator><creator>Jang, Hyeonji</creator><creator>Lee, Jinhyuk</creator><creator>Noel, Grace H.</creator><creator>Alain, Juliette</creator><creator>Joannopoulos, John</creator><creator>Xu, Kang</creator><creator>Li, Ju</creator><creator>Fink, Yoel</creator><creator>Lee, Jung Tae</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20211220</creationdate><title>Thermally drawn rechargeable battery fiber enables pervasive power</title><author>Khudiyev, Tural ; Grena, Benjamin ; Loke, Gabriel ; Hou, Chong ; Jang, Hyeonji ; Lee, Jinhyuk ; Noel, Grace H. ; Alain, Juliette ; Joannopoulos, John ; Xu, Kang ; Li, Ju ; Fink, Yoel ; Lee, Jung Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19817043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Fabric electronics</topic><topic>Li-ion battery</topic><topic>MATERIALS SCIENCE</topic><topic>Multimaterial thermal drawing</topic><topic>Ultra-long fiber battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khudiyev, Tural</creatorcontrib><creatorcontrib>Grena, Benjamin</creatorcontrib><creatorcontrib>Loke, Gabriel</creatorcontrib><creatorcontrib>Hou, Chong</creatorcontrib><creatorcontrib>Jang, Hyeonji</creatorcontrib><creatorcontrib>Lee, Jinhyuk</creatorcontrib><creatorcontrib>Noel, Grace H.</creatorcontrib><creatorcontrib>Alain, Juliette</creatorcontrib><creatorcontrib>Joannopoulos, John</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials today (Kidlington, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khudiyev, Tural</au><au>Grena, Benjamin</au><au>Loke, Gabriel</au><au>Hou, Chong</au><au>Jang, Hyeonji</au><au>Lee, Jinhyuk</au><au>Noel, Grace H.</au><au>Alain, Juliette</au><au>Joannopoulos, John</au><au>Xu, Kang</au><au>Li, Ju</au><au>Fink, Yoel</au><au>Lee, Jung Tae</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally drawn rechargeable battery fiber enables pervasive power</atitle><jtitle>Materials today (Kidlington, England)</jtitle><date>2021-12-20</date><risdate>2021</risdate><volume>52</volume><issue>C</issue><issn>1369-7021</issn><eissn>1873-4103</eissn><abstract>The increasing demand for mobile computing, communications, and robotics presents a growing need for suitable portable power solutions in non-flat customized electronic devices. Fibers as fundamental building blocks of fabrics and 3D-printed objects provide unique opportunities for developing pervasive multidimensional power systems. The characteristic small diameter (<10–3 m) and high aspect ratios (>106) of fibers and expansion of fibers into 2D and 3D power systems necessitate ultra-long lengths to meet the energy specifications of portable electronic systems. Here, we present a Li-ion battery fiber, fabricated for the first time using a thermal drawing method which occurs with simultaneous flows of multiple complex electroactive gels, particles, and polymers within protective flexible cladding. This top-down approach allows for the production of fully-functional and arbitrarily long lithium-ion fiber batteries. The continuous 140 m fiber battery demonstrates a discharge capacity of ~123 mAh and discharge energy of ~217 mWh. The scalability and material tunability of these fibers position them for use in varied non-planar electronic systems, including a 1D-flexible electronic fiber, a 2D-large-scale machine woven electronic fabric (~1.6 m2), and a 3D-printed structural electronic system. The fiber battery satisfies the requirements of portable electronics systems as it is machine washable, flexible, usable underwater, and fire/rupture-safe. Here, we have demonstrated the powering of a submarine drone, LiFi fabric, and flying drone communication through different rechargeable fiber battery schemes, which paves the way for the emergence of the pervasive battery-powered electronics.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7021 |
ispartof | Materials today (Kidlington, England), 2021-12, Vol.52 (C) |
issn | 1369-7021 1873-4103 |
language | eng |
recordid | cdi_osti_scitechconnect_1981704 |
source | Elsevier ScienceDirect Journals Complete; Elsevier SD SD College Edition Journals Collection - Physical Sciences [SCPS] |
subjects | 3D printing Fabric electronics Li-ion battery MATERIALS SCIENCE Multimaterial thermal drawing Ultra-long fiber battery |
title | Thermally drawn rechargeable battery fiber enables pervasive power |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20drawn%20rechargeable%20battery%20fiber%20enables%20pervasive%20power&rft.jtitle=Materials%20today%20(Kidlington,%20England)&rft.au=Khudiyev,%20Tural&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Joint%20Center%20for%20Energy%20Storage%20Research%20(JCESR)&rft.date=2021-12-20&rft.volume=52&rft.issue=C&rft.issn=1369-7021&rft.eissn=1873-4103&rft_id=info:doi/&rft_dat=%3Costi%3E1981704%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |