Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with s...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2022-06, Vol.434 (17) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Journal of molecular biology |
container_volume | 434 |
creator | Thomas, Wendy E. Carlucci, Laura Yakovenko, Olga Interlandi, Gianluca Le Trong, Isolde Aprikian, Pavel Magala, Pearl Larson, Lydia Sledneva, Yulia Tchesnokova, Veronika Stenkamp, Ronald E. Sokurenko, Evgeni V. |
description | The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. In conclusion, this concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1981674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981674</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19816743</originalsourceid><addsrcrecordid>eNqNjU1OwzAQhS1EJQLlDiP2kZykBHeZFqps2BD21dSdYqNkXGUGcRPOi0EcgNWT3t93YYrKunXp2sZdmsLaui5r17RX5lrk3Vp736xcYb5eyKfpEBlZYRenHrpjIIkMjzQlFp1RSaBPn6CBoBvHJEpz9LBF9QE2iY_wTD4gR5myyTB8nM9pzm8oCpjjQefEb7BB_7PEETpV9GGijMyg39-DEHuCdIIhEM5LszjhKHT7pzfmbvf0uu3LTI978VEz0idm8rqv1q5qH1bNv0rf9LtY0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Thomas, Wendy E. ; Carlucci, Laura ; Yakovenko, Olga ; Interlandi, Gianluca ; Le Trong, Isolde ; Aprikian, Pavel ; Magala, Pearl ; Larson, Lydia ; Sledneva, Yulia ; Tchesnokova, Veronika ; Stenkamp, Ronald E. ; Sokurenko, Evgeni V.</creator><creatorcontrib>Thomas, Wendy E. ; Carlucci, Laura ; Yakovenko, Olga ; Interlandi, Gianluca ; Le Trong, Isolde ; Aprikian, Pavel ; Magala, Pearl ; Larson, Lydia ; Sledneva, Yulia ; Tchesnokova, Veronika ; Stenkamp, Ronald E. ; Sokurenko, Evgeni V. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><description>The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. In conclusion, this concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biochemistry & Molecular Biology ; catch bond ; Escherichia coli ; FimH adhesin ; molecular dynamics simulations</subject><ispartof>Journal of molecular biology, 2022-06, Vol.434 (17)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Wendy E.</creatorcontrib><creatorcontrib>Carlucci, Laura</creatorcontrib><creatorcontrib>Yakovenko, Olga</creatorcontrib><creatorcontrib>Interlandi, Gianluca</creatorcontrib><creatorcontrib>Le Trong, Isolde</creatorcontrib><creatorcontrib>Aprikian, Pavel</creatorcontrib><creatorcontrib>Magala, Pearl</creatorcontrib><creatorcontrib>Larson, Lydia</creatorcontrib><creatorcontrib>Sledneva, Yulia</creatorcontrib><creatorcontrib>Tchesnokova, Veronika</creatorcontrib><creatorcontrib>Stenkamp, Ronald E.</creatorcontrib><creatorcontrib>Sokurenko, Evgeni V.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><title>Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear</title><title>Journal of molecular biology</title><description>The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. In conclusion, this concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry & Molecular Biology</subject><subject>catch bond</subject><subject>Escherichia coli</subject><subject>FimH adhesin</subject><subject>molecular dynamics simulations</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjU1OwzAQhS1EJQLlDiP2kZykBHeZFqps2BD21dSdYqNkXGUGcRPOi0EcgNWT3t93YYrKunXp2sZdmsLaui5r17RX5lrk3Vp736xcYb5eyKfpEBlZYRenHrpjIIkMjzQlFp1RSaBPn6CBoBvHJEpz9LBF9QE2iY_wTD4gR5myyTB8nM9pzm8oCpjjQefEb7BB_7PEETpV9GGijMyg39-DEHuCdIIhEM5LszjhKHT7pzfmbvf0uu3LTI978VEz0idm8rqv1q5qH1bNv0rf9LtY0g</recordid><startdate>20220611</startdate><enddate>20220611</enddate><creator>Thomas, Wendy E.</creator><creator>Carlucci, Laura</creator><creator>Yakovenko, Olga</creator><creator>Interlandi, Gianluca</creator><creator>Le Trong, Isolde</creator><creator>Aprikian, Pavel</creator><creator>Magala, Pearl</creator><creator>Larson, Lydia</creator><creator>Sledneva, Yulia</creator><creator>Tchesnokova, Veronika</creator><creator>Stenkamp, Ronald E.</creator><creator>Sokurenko, Evgeni V.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220611</creationdate><title>Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear</title><author>Thomas, Wendy E. ; Carlucci, Laura ; Yakovenko, Olga ; Interlandi, Gianluca ; Le Trong, Isolde ; Aprikian, Pavel ; Magala, Pearl ; Larson, Lydia ; Sledneva, Yulia ; Tchesnokova, Veronika ; Stenkamp, Ronald E. ; Sokurenko, Evgeni V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19816743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry & Molecular Biology</topic><topic>catch bond</topic><topic>Escherichia coli</topic><topic>FimH adhesin</topic><topic>molecular dynamics simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Wendy E.</creatorcontrib><creatorcontrib>Carlucci, Laura</creatorcontrib><creatorcontrib>Yakovenko, Olga</creatorcontrib><creatorcontrib>Interlandi, Gianluca</creatorcontrib><creatorcontrib>Le Trong, Isolde</creatorcontrib><creatorcontrib>Aprikian, Pavel</creatorcontrib><creatorcontrib>Magala, Pearl</creatorcontrib><creatorcontrib>Larson, Lydia</creatorcontrib><creatorcontrib>Sledneva, Yulia</creatorcontrib><creatorcontrib>Tchesnokova, Veronika</creatorcontrib><creatorcontrib>Stenkamp, Ronald E.</creatorcontrib><creatorcontrib>Sokurenko, Evgeni V.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Wendy E.</au><au>Carlucci, Laura</au><au>Yakovenko, Olga</au><au>Interlandi, Gianluca</au><au>Le Trong, Isolde</au><au>Aprikian, Pavel</au><au>Magala, Pearl</au><au>Larson, Lydia</au><au>Sledneva, Yulia</au><au>Tchesnokova, Veronika</au><au>Stenkamp, Ronald E.</au><au>Sokurenko, Evgeni V.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear</atitle><jtitle>Journal of molecular biology</jtitle><date>2022-06-11</date><risdate>2022</risdate><volume>434</volume><issue>17</issue><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. In conclusion, this concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2022-06, Vol.434 (17) |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_osti_scitechconnect_1981674 |
source | Elsevier ScienceDirect Journals Complete |
subjects | BASIC BIOLOGICAL SCIENCES Biochemistry & Molecular Biology catch bond Escherichia coli FimH adhesin molecular dynamics simulations |
title | Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombinant%20FimH%20Adhesin%20Demonstrates%20How%20the%20Allosteric%20Catch%20Bond%20Mechanism%20Can%20Support%20Fast%20and%20Strong%20Bacterial%20Attachment%20in%20the%20Absence%20of%20Shear&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Thomas,%20Wendy%20E.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Stanford%20Synchrotron%20Radiation%20Lightsource%20(SSRL)&rft.date=2022-06-11&rft.volume=434&rft.issue=17&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/&rft_dat=%3Costi%3E1981674%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |