Multiscale Characterization of Wettability in Porous Media
Wettability is one of the key controlling parameters for multiphase flow in porous media, and paramount for various geoscience applications. While a general awareness of the importance of wettability was established decades ago, our fundamental understanding of how wettability influences transport a...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2021-10, Vol.140 (1), p.215-240 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wettability is one of the key controlling parameters for multiphase flow in porous media, and paramount for various geoscience applications. While a general awareness of the importance of wettability was established decades ago, our fundamental understanding of how wettability influences transport and of how to characterize wettability has improved tremendously in recent years through breakthroughs in imaging technology and modeling techniques. Numerical modeling studies clearly show not only that macroscopic two-phase flow is influenced by the average wettability, but also that the spatial distribution of wetting significantly impacts the macroscopic parameters. Herein, we explore the thermodynamics for porous multiphase systems, and recent breakthroughs in wettability characterization. Our view is that bridging the multiscale characterization of wetting must consider two fundamental perspectives: geometry and energy. Advancing the overall description requires an improved understanding of the operative mechanisms that dominate at various scales, and the development of quantitative approaches to capture these effects. We take a multistage approach, looking at these fundamental perspectives from the sub-pore-to-pore length scales, followed by the pore-to-core length scales using various analytical techniques and numerical simulations. Within this context, there remain many open-ended questions, and we therefore highlight these issues to provide guidance on future research directions. Our overall aim is to provide comprehensive guidance on the multiscale characterization of wettability in porous media, in order to facilitate novel research. |
---|---|
ISSN: | 0169-3913 1573-1634 |
DOI: | 10.1007/s11242-021-01615-0 |