A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework

The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2021-10, Vol.60 (43), p.23176-23181
Hauptverfasser: Liang, Rongran, Samanta, Jayanta, Shao, Baihao, Zhang, Mingshi, Staples, Richard J., Chen, Albert D., Tang, Miao, Wu, Yuyang, Aprahamian, Ivan, Ke, Chenfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23181
container_issue 43
container_start_page 23176
container_title Angewandte Chemie (International ed.)
container_volume 60
creator Liang, Rongran
Samanta, Jayanta
Shao, Baihao
Zhang, Mingshi
Staples, Richard J.
Chen, Albert D.
Tang, Miao
Wu, Yuyang
Aprahamian, Ivan
Ke, Chenfeng
description The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage. A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.
doi_str_mv 10.1002/anie.202109987
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1981381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580646879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</originalsourceid><addsrcrecordid>eNqFkcFOGzEQhq0KpELaa88reuGywWN71_YxXYUSCcEB6NXyOrOpYbOm9kaQWx-hz8iT4CiolXpBGmn-w_fPaOYn5AvQKVDKzuzgccooA6q1kh_IEVQMSi4lP8hacF5KVcFHcpzSfeaVovUR-TErLnDEGNYYvSsaG9vwvO2znDm_LL7ZhMvixg-rHl9-_2niNo227_2ARRNDSlk9ZOA6rvJ2V5xHu8anEB8-kcPO9gk_v_UJuTuf3zYX5eX190UzuyydUFyWDHlVQ1tXXKC2rVStZEyxViJ0aqlRCw2MUaE6AC2U7JyyUEEnOqBKUMUn5GQ_N6TRm-T8iO6nC8OAbjSgFfBcE3K6hx5j-LXBNJq1Tw773g4YNsmwqqZMa8F2877-h96HTRzyCZnKDxO1kjpT0z3ldj-I2JnH6Nc2bg1Qs8vC7LIwf7PIBr03PPket-_QZna1mP_zvgKOboxC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580646879</pqid></control><display><type>article</type><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng</creator><creatorcontrib>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) ; Dartmouth College, Hanover, NH (United States)</creatorcontrib><description>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage. A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202109987</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carboxylic acids ; Chemical bonds ; Crosslinking ; Crystal structure ; Crystallinity ; Crystals ; Dimers ; heteromeric carboxylic acid dimer ; Hydrazones ; Hydrogen ; hydrogen-bonded crosslinked organic framework ; Information storage ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interlayers ; Interpenetrating networks ; Isomerization ; photo-switch ; single-crystal to single-crystal transformation ; single-crystalline porous organic material ; Substrates</subject><ispartof>Angewandte Chemie (International ed.), 2021-10, Vol.60 (43), p.23176-23181</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</citedby><cites>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</cites><orcidid>0000-0003-2399-8208 ; 0000-0002-4689-8923 ; 0000000246898923 ; 0000000323998208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202109987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202109987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981381$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Rongran</creatorcontrib><creatorcontrib>Samanta, Jayanta</creatorcontrib><creatorcontrib>Shao, Baihao</creatorcontrib><creatorcontrib>Zhang, Mingshi</creatorcontrib><creatorcontrib>Staples, Richard J.</creatorcontrib><creatorcontrib>Chen, Albert D.</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Aprahamian, Ivan</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><title>Angewandte Chemie (International ed.)</title><description>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage. A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</description><subject>Carboxylic acids</subject><subject>Chemical bonds</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>Dimers</subject><subject>heteromeric carboxylic acid dimer</subject><subject>Hydrazones</subject><subject>Hydrogen</subject><subject>hydrogen-bonded crosslinked organic framework</subject><subject>Information storage</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interlayers</subject><subject>Interpenetrating networks</subject><subject>Isomerization</subject><subject>photo-switch</subject><subject>single-crystal to single-crystal transformation</subject><subject>single-crystalline porous organic material</subject><subject>Substrates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOGzEQhq0KpELaa88reuGywWN71_YxXYUSCcEB6NXyOrOpYbOm9kaQWx-hz8iT4CiolXpBGmn-w_fPaOYn5AvQKVDKzuzgccooA6q1kh_IEVQMSi4lP8hacF5KVcFHcpzSfeaVovUR-TErLnDEGNYYvSsaG9vwvO2znDm_LL7ZhMvixg-rHl9-_2niNo227_2ARRNDSlk9ZOA6rvJ2V5xHu8anEB8-kcPO9gk_v_UJuTuf3zYX5eX190UzuyydUFyWDHlVQ1tXXKC2rVStZEyxViJ0aqlRCw2MUaE6AC2U7JyyUEEnOqBKUMUn5GQ_N6TRm-T8iO6nC8OAbjSgFfBcE3K6hx5j-LXBNJq1Tw773g4YNsmwqqZMa8F2877-h96HTRzyCZnKDxO1kjpT0z3ldj-I2JnH6Nc2bg1Qs8vC7LIwf7PIBr03PPket-_QZna1mP_zvgKOboxC</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Liang, Rongran</creator><creator>Samanta, Jayanta</creator><creator>Shao, Baihao</creator><creator>Zhang, Mingshi</creator><creator>Staples, Richard J.</creator><creator>Chen, Albert D.</creator><creator>Tang, Miao</creator><creator>Wu, Yuyang</creator><creator>Aprahamian, Ivan</creator><creator>Ke, Chenfeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2399-8208</orcidid><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000323998208</orcidid></search><sort><creationdate>20211018</creationdate><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><author>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carboxylic acids</topic><topic>Chemical bonds</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>Dimers</topic><topic>heteromeric carboxylic acid dimer</topic><topic>Hydrazones</topic><topic>Hydrogen</topic><topic>hydrogen-bonded crosslinked organic framework</topic><topic>Information storage</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interlayers</topic><topic>Interpenetrating networks</topic><topic>Isomerization</topic><topic>photo-switch</topic><topic>single-crystal to single-crystal transformation</topic><topic>single-crystalline porous organic material</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Rongran</creatorcontrib><creatorcontrib>Samanta, Jayanta</creatorcontrib><creatorcontrib>Shao, Baihao</creatorcontrib><creatorcontrib>Zhang, Mingshi</creatorcontrib><creatorcontrib>Staples, Richard J.</creatorcontrib><creatorcontrib>Chen, Albert D.</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Aprahamian, Ivan</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Rongran</au><au>Samanta, Jayanta</au><au>Shao, Baihao</au><au>Zhang, Mingshi</au><au>Staples, Richard J.</au><au>Chen, Albert D.</au><au>Tang, Miao</au><au>Wu, Yuyang</au><au>Aprahamian, Ivan</au><au>Ke, Chenfeng</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><aucorp>Dartmouth College, Hanover, NH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>60</volume><issue>43</issue><spage>23176</spage><epage>23181</epage><pages>23176-23181</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage. A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202109987</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2399-8208</orcidid><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000323998208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2021-10, Vol.60 (43), p.23176-23181
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1981381
source Wiley Online Library Journals Frontfile Complete
subjects Carboxylic acids
Chemical bonds
Crosslinking
Crystal structure
Crystallinity
Crystals
Dimers
heteromeric carboxylic acid dimer
Hydrazones
Hydrogen
hydrogen-bonded crosslinked organic framework
Information storage
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interlayers
Interpenetrating networks
Isomerization
photo-switch
single-crystal to single-crystal transformation
single-crystalline porous organic material
Substrates
title A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Heteromeric%20Carboxylic%20Acid%20Based%20Single%E2%80%90Crystalline%20Crosslinked%20Organic%20Framework&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Liang,%20Rongran&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2021-10-18&rft.volume=60&rft.issue=43&rft.spage=23176&rft.epage=23181&rft.pages=23176-23181&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202109987&rft_dat=%3Cproquest_osti_%3E2580646879%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580646879&rft_id=info:pmid/&rfr_iscdi=true