A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework
The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carbo...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2021-10, Vol.60 (43), p.23176-23181 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23181 |
---|---|
container_issue | 43 |
container_start_page | 23176 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 60 |
creator | Liang, Rongran Samanta, Jayanta Shao, Baihao Zhang, Mingshi Staples, Richard J. Chen, Albert D. Tang, Miao Wu, Yuyang Aprahamian, Ivan Ke, Chenfeng |
description | The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage.
A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning. |
doi_str_mv | 10.1002/anie.202109987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1981381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580646879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</originalsourceid><addsrcrecordid>eNqFkcFOGzEQhq0KpELaa88reuGywWN71_YxXYUSCcEB6NXyOrOpYbOm9kaQWx-hz8iT4CiolXpBGmn-w_fPaOYn5AvQKVDKzuzgccooA6q1kh_IEVQMSi4lP8hacF5KVcFHcpzSfeaVovUR-TErLnDEGNYYvSsaG9vwvO2znDm_LL7ZhMvixg-rHl9-_2niNo227_2ARRNDSlk9ZOA6rvJ2V5xHu8anEB8-kcPO9gk_v_UJuTuf3zYX5eX190UzuyydUFyWDHlVQ1tXXKC2rVStZEyxViJ0aqlRCw2MUaE6AC2U7JyyUEEnOqBKUMUn5GQ_N6TRm-T8iO6nC8OAbjSgFfBcE3K6hx5j-LXBNJq1Tw773g4YNsmwqqZMa8F2877-h96HTRzyCZnKDxO1kjpT0z3ldj-I2JnH6Nc2bg1Qs8vC7LIwf7PIBr03PPket-_QZna1mP_zvgKOboxC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580646879</pqid></control><display><type>article</type><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng</creator><creatorcontrib>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) ; Dartmouth College, Hanover, NH (United States)</creatorcontrib><description>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage.
A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202109987</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carboxylic acids ; Chemical bonds ; Crosslinking ; Crystal structure ; Crystallinity ; Crystals ; Dimers ; heteromeric carboxylic acid dimer ; Hydrazones ; Hydrogen ; hydrogen-bonded crosslinked organic framework ; Information storage ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interlayers ; Interpenetrating networks ; Isomerization ; photo-switch ; single-crystal to single-crystal transformation ; single-crystalline porous organic material ; Substrates</subject><ispartof>Angewandte Chemie (International ed.), 2021-10, Vol.60 (43), p.23176-23181</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</citedby><cites>FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</cites><orcidid>0000-0003-2399-8208 ; 0000-0002-4689-8923 ; 0000000246898923 ; 0000000323998208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202109987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202109987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981381$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Rongran</creatorcontrib><creatorcontrib>Samanta, Jayanta</creatorcontrib><creatorcontrib>Shao, Baihao</creatorcontrib><creatorcontrib>Zhang, Mingshi</creatorcontrib><creatorcontrib>Staples, Richard J.</creatorcontrib><creatorcontrib>Chen, Albert D.</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Aprahamian, Ivan</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><title>Angewandte Chemie (International ed.)</title><description>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage.
A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</description><subject>Carboxylic acids</subject><subject>Chemical bonds</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>Dimers</subject><subject>heteromeric carboxylic acid dimer</subject><subject>Hydrazones</subject><subject>Hydrogen</subject><subject>hydrogen-bonded crosslinked organic framework</subject><subject>Information storage</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interlayers</subject><subject>Interpenetrating networks</subject><subject>Isomerization</subject><subject>photo-switch</subject><subject>single-crystal to single-crystal transformation</subject><subject>single-crystalline porous organic material</subject><subject>Substrates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOGzEQhq0KpELaa88reuGywWN71_YxXYUSCcEB6NXyOrOpYbOm9kaQWx-hz8iT4CiolXpBGmn-w_fPaOYn5AvQKVDKzuzgccooA6q1kh_IEVQMSi4lP8hacF5KVcFHcpzSfeaVovUR-TErLnDEGNYYvSsaG9vwvO2znDm_LL7ZhMvixg-rHl9-_2niNo227_2ARRNDSlk9ZOA6rvJ2V5xHu8anEB8-kcPO9gk_v_UJuTuf3zYX5eX190UzuyydUFyWDHlVQ1tXXKC2rVStZEyxViJ0aqlRCw2MUaE6AC2U7JyyUEEnOqBKUMUn5GQ_N6TRm-T8iO6nC8OAbjSgFfBcE3K6hx5j-LXBNJq1Tw773g4YNsmwqqZMa8F2877-h96HTRzyCZnKDxO1kjpT0z3ldj-I2JnH6Nc2bg1Qs8vC7LIwf7PIBr03PPket-_QZna1mP_zvgKOboxC</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Liang, Rongran</creator><creator>Samanta, Jayanta</creator><creator>Shao, Baihao</creator><creator>Zhang, Mingshi</creator><creator>Staples, Richard J.</creator><creator>Chen, Albert D.</creator><creator>Tang, Miao</creator><creator>Wu, Yuyang</creator><creator>Aprahamian, Ivan</creator><creator>Ke, Chenfeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2399-8208</orcidid><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000323998208</orcidid></search><sort><creationdate>20211018</creationdate><title>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</title><author>Liang, Rongran ; Samanta, Jayanta ; Shao, Baihao ; Zhang, Mingshi ; Staples, Richard J. ; Chen, Albert D. ; Tang, Miao ; Wu, Yuyang ; Aprahamian, Ivan ; Ke, Chenfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4837-2e3561b6534e9ab78b72282b7e1f8d9e949122048f119487fc8a151f4f1084083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carboxylic acids</topic><topic>Chemical bonds</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>Dimers</topic><topic>heteromeric carboxylic acid dimer</topic><topic>Hydrazones</topic><topic>Hydrogen</topic><topic>hydrogen-bonded crosslinked organic framework</topic><topic>Information storage</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interlayers</topic><topic>Interpenetrating networks</topic><topic>Isomerization</topic><topic>photo-switch</topic><topic>single-crystal to single-crystal transformation</topic><topic>single-crystalline porous organic material</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Rongran</creatorcontrib><creatorcontrib>Samanta, Jayanta</creatorcontrib><creatorcontrib>Shao, Baihao</creatorcontrib><creatorcontrib>Zhang, Mingshi</creatorcontrib><creatorcontrib>Staples, Richard J.</creatorcontrib><creatorcontrib>Chen, Albert D.</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Aprahamian, Ivan</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Rongran</au><au>Samanta, Jayanta</au><au>Shao, Baihao</au><au>Zhang, Mingshi</au><au>Staples, Richard J.</au><au>Chen, Albert D.</au><au>Tang, Miao</au><au>Wu, Yuyang</au><au>Aprahamian, Ivan</au><au>Ke, Chenfeng</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><aucorp>Dartmouth College, Hanover, NH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>60</volume><issue>43</issue><spage>23176</spage><epage>23181</epage><pages>23176-23181</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage.
A large pore single‐crystalline hydrogen‐bonded crosslinked organic framework was synthesized through heteromeric monomer co‐crystallization followed by thiol–ene crosslinking. The crosslinked porous crystals featured large pores to host a hydrazone switch for solid‐state photo‐patterning.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202109987</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2399-8208</orcidid><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000323998208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2021-10, Vol.60 (43), p.23176-23181 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1981381 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carboxylic acids Chemical bonds Crosslinking Crystal structure Crystallinity Crystals Dimers heteromeric carboxylic acid dimer Hydrazones Hydrogen hydrogen-bonded crosslinked organic framework Information storage INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interlayers Interpenetrating networks Isomerization photo-switch single-crystal to single-crystal transformation single-crystalline porous organic material Substrates |
title | A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Heteromeric%20Carboxylic%20Acid%20Based%20Single%E2%80%90Crystalline%20Crosslinked%20Organic%20Framework&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Liang,%20Rongran&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2021-10-18&rft.volume=60&rft.issue=43&rft.spage=23176&rft.epage=23181&rft.pages=23176-23181&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202109987&rft_dat=%3Cproquest_osti_%3E2580646879%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580646879&rft_id=info:pmid/&rfr_iscdi=true |