Post-explosion Evolution of Core-collapse Supernovae
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three p...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-11, Vol.921 (1), p.19, Article 19 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | The Astrophysical journal |
container_volume | 921 |
creator | Witt, M. Psaltis, A. Yasin, H. Horn, C. Reichert, M. Kuroda, T. Obergaulinger, M. Couch, S. M. Arcones, A. |
description | We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction. |
doi_str_mv | 10.3847/1538-4357/ac1a6d |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1981226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591369877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</originalsourceid><addsrcrecordid>eNqNkM1LwzAchoMoOKd3j0OPWpfvj6OU-QGCggreQpYl2FGb2qRT_3tTKvMkeMov4XmTNw8AxwheEEnFHDEiC0qYmBuLDF_tgMn2aBdMIIS04ES87IODGNfDFis1AfQhxFS4z7YOsQrNbLEJdZ-GKfhZGTpX2FDXpo1u9ti3rmvCxrhDsOdNHd3RzzoFz1eLp_KmuLu_vi0v7wpLKUmFhWYlEbLEIA8ZYUZwLCynUinnrcJ25ag0jBPkncBsabHxSkqavyMF95hMwcl4b-5Y6Wir5OyrDU3jbNJISYQxz9DpCLVdeO9dTHod-q7JvTRmChGupBCZgiNluxBj57xuu-rNdF8aQT0I1IMtPdjSo8AckWPkwy2Dz6-7xrptLBsUCHHGaZ4gKqtkBm1l6JuUo2f_j2b6fKSr0P6W_7PXNwG2kQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591369877</pqid></control><display><type>article</type><title>Post-explosion Evolution of Core-collapse Supernovae</title><source>Institute of Physics Open Access Journal Titles</source><creator>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A.</creator><creatorcontrib>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A. ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac1a6d</identifier><language>eng</language><publisher>BRISTOL: The American Astronomical Society</publisher><subject>Astronomy & Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Collapse ; Core-collapse supernovae ; Deposition ; Evolution ; Explosions ; Explosive nucleosynthesis ; Initial conditions ; Neutrinos ; Nuclear fusion ; Physical Sciences ; Rotation ; Science & Technology ; Simulation ; Stellar evolution ; Supernova dynamics ; Supernovae</subject><ispartof>The Astrophysical journal, 2021-11, Vol.921 (1), p.19, Article 19</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000711656400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</citedby><cites>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</cites><orcidid>0000-0002-5080-5996 ; 0000-0003-2197-0797 ; 0000-0002-6995-3032 ; 0000-0001-6653-7538 ; 0000-0001-5168-6792 ; 0000-0001-5664-1382 ; 0000000151686792 ; 0000000156641382 ; 0000000250805996 ; 0000000321970797 ; 0000000166537538 ; 0000000269953032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac1a6d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,782,786,887,27933,27934,38899,39267,53876</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac1a6d$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981226$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Witt, M.</creatorcontrib><creatorcontrib>Psaltis, A.</creatorcontrib><creatorcontrib>Yasin, H.</creatorcontrib><creatorcontrib>Horn, C.</creatorcontrib><creatorcontrib>Reichert, M.</creatorcontrib><creatorcontrib>Kuroda, T.</creatorcontrib><creatorcontrib>Obergaulinger, M.</creatorcontrib><creatorcontrib>Couch, S. M.</creatorcontrib><creatorcontrib>Arcones, A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Post-explosion Evolution of Core-collapse Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>ASTROPHYS J</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</description><subject>Astronomy & Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Collapse</subject><subject>Core-collapse supernovae</subject><subject>Deposition</subject><subject>Evolution</subject><subject>Explosions</subject><subject>Explosive nucleosynthesis</subject><subject>Initial conditions</subject><subject>Neutrinos</subject><subject>Nuclear fusion</subject><subject>Physical Sciences</subject><subject>Rotation</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Stellar evolution</subject><subject>Supernova dynamics</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1LwzAchoMoOKd3j0OPWpfvj6OU-QGCggreQpYl2FGb2qRT_3tTKvMkeMov4XmTNw8AxwheEEnFHDEiC0qYmBuLDF_tgMn2aBdMIIS04ES87IODGNfDFis1AfQhxFS4z7YOsQrNbLEJdZ-GKfhZGTpX2FDXpo1u9ti3rmvCxrhDsOdNHd3RzzoFz1eLp_KmuLu_vi0v7wpLKUmFhWYlEbLEIA8ZYUZwLCynUinnrcJ25ag0jBPkncBsabHxSkqavyMF95hMwcl4b-5Y6Wir5OyrDU3jbNJISYQxz9DpCLVdeO9dTHod-q7JvTRmChGupBCZgiNluxBj57xuu-rNdF8aQT0I1IMtPdjSo8AckWPkwy2Dz6-7xrptLBsUCHHGaZ4gKqtkBm1l6JuUo2f_j2b6fKSr0P6W_7PXNwG2kQs</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Witt, M.</creator><creator>Psaltis, A.</creator><creator>Yasin, H.</creator><creator>Horn, C.</creator><creator>Reichert, M.</creator><creator>Kuroda, T.</creator><creator>Obergaulinger, M.</creator><creator>Couch, S. M.</creator><creator>Arcones, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing Ltd</general><general>IOP Publishing</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0003-2197-0797</orcidid><orcidid>https://orcid.org/0000-0002-6995-3032</orcidid><orcidid>https://orcid.org/0000-0001-6653-7538</orcidid><orcidid>https://orcid.org/0000-0001-5168-6792</orcidid><orcidid>https://orcid.org/0000-0001-5664-1382</orcidid><orcidid>https://orcid.org/0000000151686792</orcidid><orcidid>https://orcid.org/0000000156641382</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000321970797</orcidid><orcidid>https://orcid.org/0000000166537538</orcidid><orcidid>https://orcid.org/0000000269953032</orcidid></search><sort><creationdate>20211101</creationdate><title>Post-explosion Evolution of Core-collapse Supernovae</title><author>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy & Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Collapse</topic><topic>Core-collapse supernovae</topic><topic>Deposition</topic><topic>Evolution</topic><topic>Explosions</topic><topic>Explosive nucleosynthesis</topic><topic>Initial conditions</topic><topic>Neutrinos</topic><topic>Nuclear fusion</topic><topic>Physical Sciences</topic><topic>Rotation</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Stellar evolution</topic><topic>Supernova dynamics</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witt, M.</creatorcontrib><creatorcontrib>Psaltis, A.</creatorcontrib><creatorcontrib>Yasin, H.</creatorcontrib><creatorcontrib>Horn, C.</creatorcontrib><creatorcontrib>Reichert, M.</creatorcontrib><creatorcontrib>Kuroda, T.</creatorcontrib><creatorcontrib>Obergaulinger, M.</creatorcontrib><creatorcontrib>Couch, S. M.</creatorcontrib><creatorcontrib>Arcones, A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Witt, M.</au><au>Psaltis, A.</au><au>Yasin, H.</au><au>Horn, C.</au><au>Reichert, M.</au><au>Kuroda, T.</au><au>Obergaulinger, M.</au><au>Couch, S. M.</au><au>Arcones, A.</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-explosion Evolution of Core-collapse Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><stitle>ASTROPHYS J</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>921</volume><issue>1</issue><spage>19</spage><pages>19-</pages><artnum>19</artnum><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</abstract><cop>BRISTOL</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac1a6d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0003-2197-0797</orcidid><orcidid>https://orcid.org/0000-0002-6995-3032</orcidid><orcidid>https://orcid.org/0000-0001-6653-7538</orcidid><orcidid>https://orcid.org/0000-0001-5168-6792</orcidid><orcidid>https://orcid.org/0000-0001-5664-1382</orcidid><orcidid>https://orcid.org/0000000151686792</orcidid><orcidid>https://orcid.org/0000000156641382</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000321970797</orcidid><orcidid>https://orcid.org/0000000166537538</orcidid><orcidid>https://orcid.org/0000000269953032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-11, Vol.921 (1), p.19, Article 19 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_1981226 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astronomy & Astrophysics ASTRONOMY AND ASTROPHYSICS Astrophysics Collapse Core-collapse supernovae Deposition Evolution Explosions Explosive nucleosynthesis Initial conditions Neutrinos Nuclear fusion Physical Sciences Rotation Science & Technology Simulation Stellar evolution Supernova dynamics Supernovae |
title | Post-explosion Evolution of Core-collapse Supernovae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-explosion%20Evolution%20of%20Core-collapse%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Witt,%20M.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-11-01&rft.volume=921&rft.issue=1&rft.spage=19&rft.pages=19-&rft.artnum=19&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac1a6d&rft_dat=%3Cproquest_O3W%3E2591369877%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591369877&rft_id=info:pmid/&rfr_iscdi=true |