Post-explosion Evolution of Core-collapse Supernovae

We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-11, Vol.921 (1), p.19, Article 19
Hauptverfasser: Witt, M., Psaltis, A., Yasin, H., Horn, C., Reichert, M., Kuroda, T., Obergaulinger, M., Couch, S. M., Arcones, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 19
container_title The Astrophysical journal
container_volume 921
creator Witt, M.
Psaltis, A.
Yasin, H.
Horn, C.
Reichert, M.
Kuroda, T.
Obergaulinger, M.
Couch, S. M.
Arcones, A.
description We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.
doi_str_mv 10.3847/1538-4357/ac1a6d
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1981226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591369877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</originalsourceid><addsrcrecordid>eNqNkM1LwzAchoMoOKd3j0OPWpfvj6OU-QGCggreQpYl2FGb2qRT_3tTKvMkeMov4XmTNw8AxwheEEnFHDEiC0qYmBuLDF_tgMn2aBdMIIS04ES87IODGNfDFis1AfQhxFS4z7YOsQrNbLEJdZ-GKfhZGTpX2FDXpo1u9ti3rmvCxrhDsOdNHd3RzzoFz1eLp_KmuLu_vi0v7wpLKUmFhWYlEbLEIA8ZYUZwLCynUinnrcJ25ag0jBPkncBsabHxSkqavyMF95hMwcl4b-5Y6Wir5OyrDU3jbNJISYQxz9DpCLVdeO9dTHod-q7JvTRmChGupBCZgiNluxBj57xuu-rNdF8aQT0I1IMtPdjSo8AckWPkwy2Dz6-7xrptLBsUCHHGaZ4gKqtkBm1l6JuUo2f_j2b6fKSr0P6W_7PXNwG2kQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591369877</pqid></control><display><type>article</type><title>Post-explosion Evolution of Core-collapse Supernovae</title><source>Institute of Physics Open Access Journal Titles</source><creator>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A.</creator><creatorcontrib>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A. ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac1a6d</identifier><language>eng</language><publisher>BRISTOL: The American Astronomical Society</publisher><subject>Astronomy &amp; Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Collapse ; Core-collapse supernovae ; Deposition ; Evolution ; Explosions ; Explosive nucleosynthesis ; Initial conditions ; Neutrinos ; Nuclear fusion ; Physical Sciences ; Rotation ; Science &amp; Technology ; Simulation ; Stellar evolution ; Supernova dynamics ; Supernovae</subject><ispartof>The Astrophysical journal, 2021-11, Vol.921 (1), p.19, Article 19</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000711656400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</citedby><cites>FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</cites><orcidid>0000-0002-5080-5996 ; 0000-0003-2197-0797 ; 0000-0002-6995-3032 ; 0000-0001-6653-7538 ; 0000-0001-5168-6792 ; 0000-0001-5664-1382 ; 0000000151686792 ; 0000000156641382 ; 0000000250805996 ; 0000000321970797 ; 0000000166537538 ; 0000000269953032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac1a6d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,782,786,887,27933,27934,38899,39267,53876</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac1a6d$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1981226$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Witt, M.</creatorcontrib><creatorcontrib>Psaltis, A.</creatorcontrib><creatorcontrib>Yasin, H.</creatorcontrib><creatorcontrib>Horn, C.</creatorcontrib><creatorcontrib>Reichert, M.</creatorcontrib><creatorcontrib>Kuroda, T.</creatorcontrib><creatorcontrib>Obergaulinger, M.</creatorcontrib><creatorcontrib>Couch, S. M.</creatorcontrib><creatorcontrib>Arcones, A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Post-explosion Evolution of Core-collapse Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>ASTROPHYS J</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</description><subject>Astronomy &amp; Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Collapse</subject><subject>Core-collapse supernovae</subject><subject>Deposition</subject><subject>Evolution</subject><subject>Explosions</subject><subject>Explosive nucleosynthesis</subject><subject>Initial conditions</subject><subject>Neutrinos</subject><subject>Nuclear fusion</subject><subject>Physical Sciences</subject><subject>Rotation</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Stellar evolution</subject><subject>Supernova dynamics</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1LwzAchoMoOKd3j0OPWpfvj6OU-QGCggreQpYl2FGb2qRT_3tTKvMkeMov4XmTNw8AxwheEEnFHDEiC0qYmBuLDF_tgMn2aBdMIIS04ES87IODGNfDFis1AfQhxFS4z7YOsQrNbLEJdZ-GKfhZGTpX2FDXpo1u9ti3rmvCxrhDsOdNHd3RzzoFz1eLp_KmuLu_vi0v7wpLKUmFhWYlEbLEIA8ZYUZwLCynUinnrcJ25ag0jBPkncBsabHxSkqavyMF95hMwcl4b-5Y6Wir5OyrDU3jbNJISYQxz9DpCLVdeO9dTHod-q7JvTRmChGupBCZgiNluxBj57xuu-rNdF8aQT0I1IMtPdjSo8AckWPkwy2Dz6-7xrptLBsUCHHGaZ4gKqtkBm1l6JuUo2f_j2b6fKSr0P6W_7PXNwG2kQs</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Witt, M.</creator><creator>Psaltis, A.</creator><creator>Yasin, H.</creator><creator>Horn, C.</creator><creator>Reichert, M.</creator><creator>Kuroda, T.</creator><creator>Obergaulinger, M.</creator><creator>Couch, S. M.</creator><creator>Arcones, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing Ltd</general><general>IOP Publishing</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0003-2197-0797</orcidid><orcidid>https://orcid.org/0000-0002-6995-3032</orcidid><orcidid>https://orcid.org/0000-0001-6653-7538</orcidid><orcidid>https://orcid.org/0000-0001-5168-6792</orcidid><orcidid>https://orcid.org/0000-0001-5664-1382</orcidid><orcidid>https://orcid.org/0000000151686792</orcidid><orcidid>https://orcid.org/0000000156641382</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000321970797</orcidid><orcidid>https://orcid.org/0000000166537538</orcidid><orcidid>https://orcid.org/0000000269953032</orcidid></search><sort><creationdate>20211101</creationdate><title>Post-explosion Evolution of Core-collapse Supernovae</title><author>Witt, M. ; Psaltis, A. ; Yasin, H. ; Horn, C. ; Reichert, M. ; Kuroda, T. ; Obergaulinger, M. ; Couch, S. M. ; Arcones, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c0ad811c3a1f0535a7627c64899efc92cde48a5631fe725bc2af9884847876f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Collapse</topic><topic>Core-collapse supernovae</topic><topic>Deposition</topic><topic>Evolution</topic><topic>Explosions</topic><topic>Explosive nucleosynthesis</topic><topic>Initial conditions</topic><topic>Neutrinos</topic><topic>Nuclear fusion</topic><topic>Physical Sciences</topic><topic>Rotation</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Stellar evolution</topic><topic>Supernova dynamics</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witt, M.</creatorcontrib><creatorcontrib>Psaltis, A.</creatorcontrib><creatorcontrib>Yasin, H.</creatorcontrib><creatorcontrib>Horn, C.</creatorcontrib><creatorcontrib>Reichert, M.</creatorcontrib><creatorcontrib>Kuroda, T.</creatorcontrib><creatorcontrib>Obergaulinger, M.</creatorcontrib><creatorcontrib>Couch, S. M.</creatorcontrib><creatorcontrib>Arcones, A.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Witt, M.</au><au>Psaltis, A.</au><au>Yasin, H.</au><au>Horn, C.</au><au>Reichert, M.</au><au>Kuroda, T.</au><au>Obergaulinger, M.</au><au>Couch, S. M.</au><au>Arcones, A.</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-explosion Evolution of Core-collapse Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><stitle>ASTROPHYS J</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>921</volume><issue>1</issue><spage>19</spage><pages>19-</pages><artnum>19</artnum><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 explosion models during several seconds. We present a broad study based on three progenitors (11.2, 15, and 27 M (circle dot)), different neutrino heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind (NDW) that survives for several seconds. This indicates that NDWs are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 M (circle dot) progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.</abstract><cop>BRISTOL</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac1a6d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5080-5996</orcidid><orcidid>https://orcid.org/0000-0003-2197-0797</orcidid><orcidid>https://orcid.org/0000-0002-6995-3032</orcidid><orcidid>https://orcid.org/0000-0001-6653-7538</orcidid><orcidid>https://orcid.org/0000-0001-5168-6792</orcidid><orcidid>https://orcid.org/0000-0001-5664-1382</orcidid><orcidid>https://orcid.org/0000000151686792</orcidid><orcidid>https://orcid.org/0000000156641382</orcidid><orcidid>https://orcid.org/0000000250805996</orcidid><orcidid>https://orcid.org/0000000321970797</orcidid><orcidid>https://orcid.org/0000000166537538</orcidid><orcidid>https://orcid.org/0000000269953032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-11, Vol.921 (1), p.19, Article 19
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_1981226
source Institute of Physics Open Access Journal Titles
subjects Astronomy & Astrophysics
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Collapse
Core-collapse supernovae
Deposition
Evolution
Explosions
Explosive nucleosynthesis
Initial conditions
Neutrinos
Nuclear fusion
Physical Sciences
Rotation
Science & Technology
Simulation
Stellar evolution
Supernova dynamics
Supernovae
title Post-explosion Evolution of Core-collapse Supernovae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-explosion%20Evolution%20of%20Core-collapse%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Witt,%20M.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-11-01&rft.volume=921&rft.issue=1&rft.spage=19&rft.pages=19-&rft.artnum=19&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac1a6d&rft_dat=%3Cproquest_O3W%3E2591369877%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591369877&rft_id=info:pmid/&rfr_iscdi=true